【題目】已知函數(shù).
(1)求證:是
上的奇函數(shù);
(2)求的值;
(3)求證:在
上單調(diào)遞增,在
上單調(diào)遞減;
(4)求在
上的最大值和最小值;
(5)直接寫(xiě)出一個(gè)正整數(shù),滿足
.
【答案】(1)證明見(jiàn)解析;(2);(3)證明見(jiàn)解析;(4)最大值
,最小值
;(5)答案不唯一,具體見(jiàn)解析.
【解析】
(1)利用奇偶性的定義證明即可;
(2)代值計(jì)算即可得出的值;
(3)任取,作差
,通分、因式分解后分
和
兩種情況討論
的符號(hào),即可證明出結(jié)論;
(4)利用(3)中的結(jié)論可求出函數(shù)在區(qū)間
上的最大值和最小值;
(5)可取滿足的任何一個(gè)整數(shù)
,利用函數(shù)
的單調(diào)性和不等式的性質(zhì)可推導(dǎo)出
成立.
(1)函數(shù)的定義域?yàn)?/span>
,定義域關(guān)于原點(diǎn)對(duì)稱,
且,因此,函數(shù)
是
上的奇函數(shù);
(2);
(3)任取,
.
當(dāng)時(shí),
,
,
,則
;
當(dāng)時(shí),
,
,
,則
.
因此,函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減;
(4)由于函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,
當(dāng)時(shí),函數(shù)
取最大值,即
;
當(dāng)時(shí),
,
所以,當(dāng)時(shí),函數(shù)
取最小值,即
.
綜上所述,函數(shù)在
上的最大值為
,最小值為
;
(5)由于函數(shù)在
上單調(diào)遞減,
當(dāng)時(shí),
,
所以,滿足任何一個(gè)整數(shù)
均滿足不等式
.
可取,滿足條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,離心率
,點(diǎn)
分別為橢圓的左右焦點(diǎn),過(guò)右焦點(diǎn)
且垂直于長(zhǎng)軸的弦長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓左焦點(diǎn)作直線
,交橢圓于
兩點(diǎn),若
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足
,且
,
(1)求證數(shù)列是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)記,求
;
(3)是否存在實(shí)數(shù)k,使得對(duì)任意
都成立?若存在,求實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,
平面
,
是邊長(zhǎng)為
的等邊三角形,
為
邊中點(diǎn),且
.
(1)求證:平面平面
;
(2)求證:平面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),有兩個(gè)零點(diǎn)為
和
.
(1)求、
的值;
(2)證明:;
(3)用單調(diào)性定義證明函數(shù)在區(qū)間
上是增函數(shù);
(4)求在區(qū)間
上的最小值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在含有個(gè)元素的集合
中,若這
個(gè)元素的一個(gè)排列(
,
,…,
)滿足
,則稱這個(gè)排列為集合
的一個(gè)錯(cuò)位排列(例如:對(duì)于集合
,排列
是
的一個(gè)錯(cuò)位排列;排列
不是
的一個(gè)錯(cuò)位排列).記集合
的所有錯(cuò)位排列的個(gè)數(shù)為
.
(1)直接寫(xiě)出,
,
,
的值;
(2)當(dāng)時(shí),試用
,
表示
,并說(shuō)明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心為原點(diǎn)
,且與直線
相切.
(1)求圓的方程;
(2)點(diǎn)在直線
上,過(guò)
點(diǎn)引圓
的兩條切線
,
,切點(diǎn)為
,
,求證:直線
恒過(guò)定點(diǎn).
(3)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是AC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,
,
,
.
若點(diǎn)M是線段BF的中點(diǎn),證明:
平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式的解集為
.
(1)求a,b的值.
(2)當(dāng)時(shí),解關(guān)于x的不等式
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com