【題目】已知函數f(x)=(x
R),g(x)=2a-1
(1)求函數f(x)的單調區間與極值.
(2)若f(x)≥g(x)對恒成立,求實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知 ,其中向量
(x∈R),
(1)求函數y=f(x)的單調遞增區間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知f (A)=2,a= ,b=
,求邊長c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
為正方形,
底面
,
為棱
的中點.
(1)證明: ;
(2)求直線與平面
所成角的正弦值;
(3)若為
中點,棱
上是否存在一點
,使得
,若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點P,以A為球心,AP為半徑作一個球.設AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數f(x)的圖象最有可能的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,“共享單車”的出現為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據行業規定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足
,乙城市收益Q與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某學校高三年級共名男生中隨機抽取
名測量身高,測量發現被測學生身高全部介于
和
之間,將測量結果按如下方式分成八組,第一組
;第二組
,
,第八組
,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數相同,第六組、第七組、第八組人數依次構成等差數列.
()估計這所學校高三年級全體男生身高
以上(含
)的人數.
()求第六組、第七組的頻率并補充完整頻率分布直方圖.(鉛筆作圖并用中性筆描黑).
()若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為
、
,求滿足
的事件概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。
求:(1)選出的2名同學來自不同年相級部且性別同的概率;
(2)選出的2名同學都來自高中部或都來自初中部的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為
,且橢圓經過
.
(1)求橢圓的方程;
(2)是否存在實數,使直線
與橢圓有兩個不同交點
,且
(
為坐標原點),若存在,求出
的值.不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,底面
是邊長為2的正方形,
分別為線段
,
的中點.
(1)求證: ||平面
;
(2)四棱柱的外接球的表面積為
,求異面直線
與
所成的角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com