日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.在平面直角坐標系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,兩個頂點分別為A(-a,0),B(a,0),點M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,過點M斜率為k(k≠0)的直線交橢圓E于C,D兩點,其中點C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1,k2,求證:$\frac{{k}_{1}}{{k}_{2}}$為定值.

分析 (1)由3$\overrightarrow{AM}$=$\overrightarrow{MB}$,得a 即可;
(2)設點C的坐標為(x0,y0),y0>0,由BC⊥CD,得(-1-x0)( 2-x0)+y02=0.解得x0=-$\frac{2}{3}$,y0=$\frac{2\sqrt{2}}{3}$,即可.
(3),設C(x0,y0),則CD:y=$\frac{{y}_{0}}{{x}_{0}+1}$(x+1)(-2<x0<2且x0≠-1),
由$\left\{\begin{array}{l}y=\frac{y0}{x0+1}(x+1)\\ \frac{x2}{4}+y2=1\end{array}$消去y,得x2+8y02x+4y02-4(x0+1)2=0,得D($\frac{-8-5{x}_{0}}{5+2{x}_{0}}$,$\frac{-3{y}_{0}}{5+2{x}_{0}}$),可求$\frac{{k}_{1}}{{k}_{2}}$

解答 解:(1)因為3$\overrightarrow{AM}$=$\overrightarrow{MB}$,所以3(-1+a,0)=(a+1,0),解得a=2.              …(2分)
又因為$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,所以c=$\sqrt{3}$,所以b2=a2-c2=1,
所以橢圓E的方程為$\frac{x2}{4}$+y2=1.                        …(4分)
(2)設點C的坐標為(x0,y0),y0>0,
則$\overrightarrow{CM}$=(-1-x0,-y0),$\overrightarrow{CB}$=(2-x0,-y0).
因為BC⊥CD,所以(-1-x0)( 2-x0)+y02=0. ①…(6分)
又因為$\frac{{{x}_{0}}^{2}}{4}$+y02=1,②
聯立①②,解得x0=-$\frac{2}{3}$,y0=$\frac{2\sqrt{2}}{3}$,…(8分)
所以k=$\frac{\frac{2\sqrt{2}}{3}}{-\frac{2}{3}+1}$=2$\sqrt{2}$.                               …(10分)
(3),設C(x0,y0),則CD:y=$\frac{{y}_{0}}{{x}_{0}+1}$(x+1)(-2<x0<2且x0≠-1),
由$\left\{\begin{array}{l}y=\frac{y0}{x0+1}(x+1)\\ \frac{x2}{4}+y2=1\end{array}$消去y,
得x2+8y02x+4y02-4(x0+1)2=0.…(12分)
又因為$\frac{{{x}_{0}}^{2}}{4}$+y02=1,所以得D($\frac{-8-5{x}_{0}}{5+2{x}_{0}}$,$\frac{-3{y}_{0}}{5+2{x}_{0}}$),…(14分)
所以$\frac{{k}_{1}}{{k}_{2}}$=$\frac{\frac{-3{y}_{0}}{5+2{y}_{0}}}{\frac{-8-5{x}_{0}}{5+2{x}_{0}}}•\frac{{x}_{0}-2}{{y}_{0}}$=$\frac{-3{y}_{0}}{-{x}_{0}+2}•\frac{{x}_{0}-2}{{y}_{0}}$=3,
所以$\frac{k1}{k2}$為定值.                                …(16分)

點評 本題考查了直線橢圓的位置關系,對計算能力的要求較高,設而不求、方程的思想貫穿整個解題過程,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知函數f(x)=a(x+a)(x-a+3),g(x)=2x+2-1,若對任意x∈R,f(x)>0和g(x)>0至少有一個成立,則實數a的取值范圍是( 。
A.(1,2)B.(2,3)C.(-2,-1)∪(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.△ABC中,D在AC上,且$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{DC}$,P是BD上的點,$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$,則m的值是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.在平面直角坐標系xOy中,點(4,3)到直線3x-4y+a=0的距離為1,則實數a的值是±5.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.有下列命題:
①“m>0”是“方程x2+my2=1表示橢圓”的充要條件;
②“a=1”是“直線l1:ax+y-1=0與直線l2:x+ay-2=0平行”的充分不必要條件;
③“函數f (x)=x3+mx單調遞增”是“m>0”的充要條件;
④已知p,q是兩個不等價命題,則“p或q是真命題”是“p且q是真命題”的必要不充分條件.
其中所有真命題的序號是②④.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.在直角坐標系xOy中,圓C的參數方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcosθ}\\{y=\frac{\sqrt{2}}{2}+rsinθ}\end{array}$(θ為參數,r>0),以O為極點,x軸的非負半軸為極軸,并取相同的長度單位建立極坐標系,直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圓心的極坐標;
(2)若圓C上的點到直線l的最大距離為2$\sqrt{2}$,求r的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知矩陣M=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$,N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,則矩陣MN的逆矩陣是$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知數列{xn}滿足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用數學歸納法證明:0<xn<1;
(2)設${a}_{n}=\frac{1}{{x}_{n}}$,求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.計算:
(1)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8-{5^{{{log}_5}3}}$
(2)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}+2{log_3}6-{log_3}12$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 偷偷操不一样 | 久久免费精品视频 | 久久亚洲精品视频 | 在线播放国产精品 | 能看毛片的网站 | 麻豆亚洲一区 | 99热视| 久久久久国产精品夜夜夜夜夜 | 天堂中文资源在线 | 午夜视频在线播放 | 中国美女乱淫免费看视频 | 一级黄色片免费 | 欧美一区二区三区的 | 日韩精品黄| 97久久久久 | 久久精品视频网 | 成年人国产| 日韩久久久久 | 毛片免费观看视频 | 久久精品国产视频 | 蜜臀久久99精品久久久久久宅男 | 亚洲影音 | 天天澡天天狠天天天做 | 亚洲精品二区 | 婷婷在线播放 | 一区二区三区久久 | 欧美视频一区 | 一区二区高清视频 | 一区二区三区视频在线观看 | 日韩精品中文字幕在线观看 | 日韩精品片 | www.一区| 天天躁日日躁狠狠很躁 | 久久久精品一区 | 黄色大片在线免费观看 | 中文在线观看免费视频 | 中文字幕免费观看视频 | 激情网站在线观看 | 日韩在线观看一区 | 免费三片在线播放 | 国产不卡在线视频 |