【題目】已知函數(shù)
(1)求函數(shù)的極值
(2)定義:若函數(shù)在區(qū)間
上的取值范圍為
,則稱區(qū)間
為函數(shù)
的“美麗區(qū)間”.試問函數(shù)
在
上是否存在“美麗區(qū)間”?若存在,求出所有符合條件的“美麗區(qū)間”;若不存在,請(qǐng)說明理由
【答案】(1)當(dāng)時(shí),函數(shù)
有極大值為1,當(dāng)
時(shí),函數(shù)
有極小值為
.(2)見解析.
【解析】
(1)利用函數(shù)的正負(fù)性,來求原函數(shù)的單調(diào)區(qū)間,可得函數(shù)的極值;
(2)據(jù)“域同區(qū)間”的定義得到,則方程
有兩個(gè)大于3的相異實(shí)根.,然后利用方程根的情況列式求解,即可得出結(jié)論.
(1)因?yàn)?/span>,
所以
.
令,可得
或
.
則在
上的變化情況為:
1 | 3 | ||||
+ | 0 | - | 0 | + | |
增函數(shù) | 1 | 減函數(shù) | 增函數(shù) |
所以當(dāng)時(shí),函數(shù)
有極大值為1,當(dāng)
時(shí),函數(shù)
有極小值為
.
(2)假設(shè)函數(shù)在
上存在“美麗區(qū)間”
,
由(1)知函數(shù)在
上單調(diào)遞增.
所以即
也就是方程有兩個(gè)大于3的相異實(shí)根.
設(shè)
,
則.
令
,解得
,
.
當(dāng)時(shí),
,當(dāng)
時(shí),
,
所以函數(shù)在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增.
因?yàn)?/span>,
,
,
所以函數(shù)在區(qū)間
上只有一個(gè)零點(diǎn).
這與方程有兩個(gè)大于3的相異實(shí)根相矛盾,所以假設(shè)不成立.
所以函數(shù)在
上不存在“美麗區(qū)間”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)正方形的四條邊相等;(2)有兩個(gè)角是的三角形是等腰直角三角形;(3)正數(shù)的平方根不等于0;(4)至少有一個(gè)正整數(shù)是偶數(shù);是全稱量詞命題的有________;是存在量詞命題的有________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合
與
的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立
關(guān)于
的回歸方程
(2)若把月收入不低于2萬元稱為“高收入者”.
試?yán)茫?/span>1)的結(jié)果,估計(jì)他36歲時(shí)能否稱為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?
附注:①.參考數(shù)據(jù):,
,
,
,
,
,
,其中
,取
,
②.參考公式:回歸方程中斜率
和截距
的最小二乘估計(jì)分別為:
,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式
,下列結(jié)論正確的是( )
A.當(dāng)時(shí),不等式
的解集為
B.當(dāng),
時(shí),不等式
的解集為
C.當(dāng)時(shí),不等式
的解集可以為
的形式
D.不等式的解集恰好為
,那么
E.不等式的解集恰好為
,那么
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-3|-|x+1|.
(1)求f(x)的值域;
(2)解不等式:f(x)>0;
(3)若直線y=a與f(x)的圖像無交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
是矩形,面
底面
,且
是邊長(zhǎng)為
的等邊三角形,
在
上,且
面
.
(1)求證: 是
的中點(diǎn);
(2)在上是否存在點(diǎn)
,使二面角
為直角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)=-f(x)在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?/span>-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個(gè)根.
其中正確結(jié)論的序號(hào)有______.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對(duì)市場(chǎng)進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足.設(shè)甲合作社的投入為x(單位:萬元),兩個(gè)合作社的總收益為f(x)(單位:萬元).
(1)當(dāng)甲合作社的投入為25萬元時(shí),求兩個(gè)合作社的總收益;
(2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com