【題目】我們要計算由拋物線,x軸以及直線
所圍成的區(qū)域的面積S,可用x軸上的分點(diǎn)
、
、
、…、
、1將區(qū)間
分成n個小區(qū)間,在每個小區(qū)間上做一個小矩形,使矩形的左端點(diǎn)在拋物線
上,這些矩形的高分別為
、
、
、…、
,矩形的底邊長都是
,設(shè)所有這些矩形面積的總和為
,為求S,只須令分割的份數(shù)n無限增大,
就無限趨近于S,即
.
(1)求數(shù)列的通項(xiàng)公式,并求出S;
(2)利用相同的思想方法,探求由函數(shù)的圖象,x軸以及直線
和
所圍成的區(qū)域的面積T.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于圓的正方形
邊長為1,圓
內(nèi)切于正方形
,正方形
內(nèi)接于圓
,···,正方形
內(nèi)接于圓
,圓
內(nèi)切于正方形
,正方形
內(nèi)接于圓
,由此無窮個步驟進(jìn)行下去記圓
的面積記作
,記正方形
的面積記作
.
(1)求的值
(2)記的所有項(xiàng)和為
,
的所有項(xiàng)和為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中
①.對于命題:存在
,則
:
;
②.命題“若,則函數(shù)
在
上是增函數(shù)”的逆命題為假命題;
③.若為真命題,則
均為真命題;
④.命題“若,則
”的逆否命題是“若
,則
”.
錯誤的是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是圓錐的高,
是圓錐底面的直徑,
是底面圓周上一點(diǎn),
是
的中點(diǎn),平面
和平面
將圓錐截去部分后的幾何體如圖所示.
(1)求證:平面平面
;
(2)若,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】社區(qū)服務(wù)是高中學(xué)生社會實(shí)踐活動的一個重要內(nèi)容,漢中某中學(xué)隨機(jī)抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時間,按,
,
,
,
(單位:小時)進(jìn)行統(tǒng)計,得出男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表
社區(qū)服務(wù)時間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計 | 100 | 1 |
學(xué)生社區(qū)服務(wù)時間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評價的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時間不少于20個小時才為合格,根據(jù)上面的統(tǒng)計圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時間達(dá)到合格程度與性別有關(guān),并說明理由.
(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時間估計全市9萬名高中學(xué)生參加社區(qū)服務(wù)時間的情況,并以頻率作為概率.
(i)求全市高中學(xué)生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù).
(ⅱ)對我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評價.
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
(
為參數(shù),
),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)若直線被圓截得的弦長為
時,求
的值.
(2)直線的參數(shù)方程為
(
為參數(shù)),若
,垂足為
,求
點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線與圓C相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)
為曲線
上的動點(diǎn),點(diǎn)
在線段
的延長線上,且滿足
,點(diǎn)
的軌跡為
.
(1)求,
的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為
,求△
面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com