日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,在Rt△AOB中,,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
(I)求證:平面COD⊥平面AOB;
(II)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大小;
(III)求CD與平面AOB所成角最大時(shí)的正切值大小.

【答案】分析:(1)欲證平面COD⊥平面AOB,先證直線與平面垂直,由題意可得:CO⊥AO,BO⊥AO,CO⊥BO,所以CO⊥平面AOB,進(jìn)一步易得平面COD⊥平面AOB
(2)解法一:求異面直線所成的角,需要將兩條異面直線平移交于一點(diǎn),由D為AB的中點(diǎn),故平移時(shí)很容易應(yīng)聯(lián)想到中位線,作DE⊥OB,垂足為E,連接CE,則DE∥AO,所以∠CDE是異面直線AO與CD所成的角
解法二:以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OB、OA為x、y、z軸,建立空間直角坐標(biāo)系O-xyz.這種解法的好處就是:(1)解題過程中較少用到空間幾何中判定線線、面面、線面相對(duì)位置的有關(guān)定理,因?yàn)檫@些可以用向量方法來(lái)解決.(2)即使立體感稍差一些的學(xué)生也可以順利解出,因?yàn)橹恍璁媯(gè)草圖以建立坐標(biāo)系和觀察有關(guān)點(diǎn)的位置即可.
(3)本題的設(shè)問是遞進(jìn)式的,第(1)問是為第(3)問作鋪墊的.求直線與平面所成的角,首先要作出這個(gè)平面的垂線,由第(1)問可知:CO⊥平面AOB,所以∠CDO是CD與平面AOB所成的角,tan∠CDO==,當(dāng)OD最小時(shí),tan∠CDO最大
解答:解:(I)由題意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C是直二面角,
又∵二面角B-AO-C是直二面角,
∴CO⊥BO,
又∵AO∩BO=O,
∴CO⊥平面AOB,
又CO?平面COD,
∴平面COD⊥平面AOB.(4分)
(II)解法一:作DE⊥OB,垂足為E,連接CE(如圖),則DE∥AO,
∴∠CDE是異面直線AO與CD所成的角.
在 Rt△COE中,CO=BO=2,



∴在Rt△CDE中,
∴異面直線AO與CD所成角的余弦值大小為.(9分)

解法二:建立空間直角坐標(biāo)系O-xyz,如圖,
則O(0,0,0),,C(2,0,0),

=
∴異面直線AO與CD所成角的余弦值為.(9分)
(III)由(I)知,CO⊥平面AOB,
∴∠CDO是CD與平面AOB所成的角,
.當(dāng)OD最小時(shí),∠CDO最大,這時(shí),OD⊥AB,垂足為D,
∴CD與平面AOB所成角的最大時(shí)的正切值為.(14分)
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、異面直線所成的角的度量、線面角的度量等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的余弦值大小;
(Ⅲ)求CD與平面AOB所成角最大時(shí)的正切值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)設(shè)CD與平面AOB所成角的最大值為α,求tanα值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C為直二面角.D是AB的中點(diǎn).
(I)求證:平面COD⊥平面AOB;
(II)求異面直線AO與CD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在 Rt△AOB中,∠OAB=
π6
,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
(1)求異面直線AO與CD所成角的大小;
(2)若某動(dòng)點(diǎn)在圓錐體側(cè)面上運(yùn)動(dòng),試求該動(dòng)點(diǎn)從點(diǎn)C出發(fā)運(yùn)動(dòng)到點(diǎn)D所經(jīng)過的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,在 Rt△AOB中,∠OAB=
π6
,斜邊AB=4,D是AB的中點(diǎn).現(xiàn)將 Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐體,點(diǎn)C為圓錐體底面圓周上的一點(diǎn),且∠BOC=90°.
(1)求該圓錐體的體積;
(2)求異面直線AO與CD所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产精品美女一区二区三区四区 | 亚洲欧洲中文日韩 | 99pao成人国产永久免费视频 | 色噜噜噜噜 | 亚洲精品美女 | 成人在线观看一区 | 亚洲自拍一区在线观看在线观看 | 爱爱视频天天操 | 91福利在线导航 | 久久久久久网站 | 日韩欧美国产一区二区三区 | 欧美一区二区三区视频在线观看 | 久久国产精品一区二区 | 日韩在线免费观看网站 | 欧美日韩综合精品 | 天天天天天天天天操 | 一区二区不卡 | 亚洲国产精品99久久久久久久久 | 欧美精品久久久久 | 久久午夜综合久久 | 狠狠操网站 | 国产高清av在线一区二区三区 | 亚洲天堂在线视频播放 | 一区二区精品在线 | 天天摸夜夜摸爽爽狠狠婷婷97 | 成人国产免费视频 | www.99re| 欧洲一级黄 | 欧美精品免费在线观看 | 亚洲视频一区二区在线 | 免费国产视频 | 99九九久久 | 一级黄色短片 | 国产日韩精品一区二区在线观看播放 | 欧洲成人在线观看 | 天天看天天爽 | 精品欧美一区二区三区久久久 | 久久久久久久久国产成人免费 | 一级激情片 | 亚洲精品白浆高清久久久久久 | 成人黄在线观看 |