【題目】如圖,在四棱錐中,已知棱
,
,
兩兩垂直,長度分別為1,2,2.若
(
),且向量
與
夾角的余弦值為
.
(1)求的值;
(2)求直線與平面
所成角的正弦值.
【答案】(1);(2)
.
【解析】
試題(1)以為坐標原點,
、
、
分別為
、
、
軸建立空間直角坐標系
,寫出
,
的坐標,根據空間向量夾角余弦公式列出關于
的方程可求;(2)設岀平面
的法向量為
,根據
,進而得到
,從而求出
,向量
的坐標可以求出,從而可根據向量夾角余弦的公式求出
,從而得
和平面
所成角的正弦值.
試題解析:(1)依題意,以為坐標原點,
、
、
分別為
、
、
軸建立空間直角坐標系
,因為
,所以
,從而
,則由
,解得
(舍去)或
.
(2)易得,
,設平面
的法向量
,
則,
,即
,且
,所以
,不妨取
,則平面
的一個法向量
,又易得
,故
,所以直線
與平面
所成角的正弦值為
.
考點: 1、空間兩向量夾角余弦公式;2、利用向量求直線和平面說成角的正弦.
科目:高中數學 來源: 題型:
【題目】已知曲線上動點
與定點
的距離和它到定直線
的距離的比是常數
,若過
的動直線
與曲線
相交于
兩點
(1)說明曲線的形狀,并寫出其標準方程;
(2)是否存在與點不同的定點
,使得
恒成立?若存在,求出點
的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,DC⊥平面ABC,,
,
,P、Q分別為AE,AB的中點.
(1)證明:平面
.
(2)求異面直線與
所成角的余弦值;
(3)求平面與平面
所成銳二面角的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點分別在
軸和
軸上運動,且
,若動點
滿足,動點
的軌跡為
.
(1)求的方程;
(2)過點作動直線
的平行線交軌跡
于
兩點,則
是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設橢圓
的左焦點為
,左準線為
為橢圓
上任意一點,直線
,垂足為
,直線
與
交于點
.
(1)若,且
,直線
的方程為
.①求橢圓
的方程;②是否存在點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
(2)設直線與圓
交于
兩點,求證:直線
均與圓
相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有人認為在機動車駕駛技術上,男性優于女性.這是真的么?某社會調查機構與交警合作隨機統計了經常開車的名駕駛員最近三個月內是否有交通事故或交通違法事件發生,得到下面的列聯表:
男 | 女 | 合計 | |
無 | 40 | 35 | 75 |
有 | 15 | 10 | 25 |
合計 | 55 | 45 | 100 |
附:.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
據此表,可得
A. 認為機動車駕駛技術與性別有關的可靠性不足
B. 認為機動車駕駛技術與性別有關的可靠性超過
C. 認為機動車駕駛技術與性別有關的可靠性不足
D. 認為機動車駕駛技術與性別有關的可靠性超過
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知拋物線的焦點F在y軸上,其準線與雙曲線的下準線重合.
(1)求拋物線的標準方程;
(2)設A(,
)(
>0)是拋物線上一點,且AF=
,B是拋物線的準線與y軸的交點.過點A作拋物線的切線l,過點B作l的平行線l′,直線l′與拋物線交于點M,N,求△AMN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的方程為,離心率為
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動點的直線交
軸的負半軸于點
,交C于點
(
在第一象限),且
是線段
的中點,過點
作x軸的垂線交C于另一點
,延長線
交C于點
.
(i)設直線,
的斜率分別為
,
,證明:
;
(ii)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD.
(Ⅰ)求證:CB⊥PD;
(Ⅱ)求二面角C-PB-A的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com