【題目】已知橢圓C的方程為,離心率為
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動點的直線交
軸的負(fù)半軸于點
,交C于點
(
在第一象限),且
是線段
的中點,過點
作x軸的垂線交C于另一點
,延長線
交C于點
.
(i)設(shè)直線,
的斜率分別為
,
,證明:
;
(ii)求直線的斜率的最小值.
【答案】(Ⅰ);(Ⅱ)(i)見解析;(ii)
【解析】
(Ⅰ)根據(jù)拋物線焦點坐標(biāo)求得,再利用離心率和
的關(guān)系求得
,進(jìn)而得到橢圓方程;(Ⅱ)(i)利用
為線段
中點表示出
點坐標(biāo),再根據(jù)橢圓對稱性得到
點坐標(biāo);利用兩點連線斜率公式表示出
和
,從而結(jié)論可證;(ii)將直線
方程與橢圓方成立聯(lián)立,利用韋達(dá)定理可用
和
表示出
,利用
同理可求得
,進(jìn)而利用兩點連線斜率公式寫出所求斜率,結(jié)合基本不等式求出最小值.
(Ⅰ)拋物線
的焦點是
且
,
橢圓
的方程
(Ⅱ)(i)設(shè),那么
是線段
的中點
,
,
(ii)根據(jù)題意得:直線的斜率一定存在且
設(shè)直線為
,則直線
為
聯(lián)立,整理得:
利用韋達(dá)定理可知:
同理可得
當(dāng)且僅當(dāng)即為
時,等號成立
直線
斜率的最小值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式
;
(Ⅱ)當(dāng)時,函數(shù)
的最小值為
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知棱
,
,
兩兩垂直,長度分別為1,2,2.若
(
),且向量
與
夾角的余弦值為
.
(1)求的值;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為
,線段
上有兩個動點
,且
,則下列結(jié)論中正確的是( )
A.
B.平面
C.與平面
所成角是
D.面積與
的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①離心率,②橢圓
過點
,③
面積的最大值為
,這三個條件中任選一個,補(bǔ)充在下面(橫線處)問題中,解決下面兩個問題.
設(shè)橢圓的左、右焦點分別為
,過
且斜率為
的直線
交橢圓于
兩點,已知橢圓
的短軸長為
,________.
(1)求橢圓的方程;
(2)若線段的中垂線與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)并銷售某高科技產(chǎn)品,已知每年生產(chǎn)該產(chǎn)品的固定成本是800萬元,生產(chǎn)成本e(單位;萬元)與生產(chǎn)的產(chǎn)品件數(shù)x(單位:萬件)的平方成正比;該產(chǎn)品單價p(單位:元)與生產(chǎn)的產(chǎn)品件數(shù)x滿足(b為常數(shù)),已知當(dāng)該產(chǎn)品的單價為300元時,生產(chǎn)成本是1800萬元,當(dāng)單價為320元時,生產(chǎn)成本是200萬元,且工廠生產(chǎn)的產(chǎn)品都可以銷售完.
(1)每年生產(chǎn)該產(chǎn)品多少萬件時,平均成本最低,最低為多少?
(2)若該工廠希望年利潤不低于8200萬元,則每年大約應(yīng)該生產(chǎn)多少萬件該產(chǎn)品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)為,
,過
垂直于長軸的直線交橢圓于
、
兩點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線
與橢圓交于不同的兩點
、
,則
的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已數(shù)列的各項均為正整數(shù),且滿足
,又
.
(1)求的值,猜想
的通項公式并用數(shù)學(xué)歸納法證明;
(2)設(shè),求
的值;
(3)設(shè),是否存在最大的整數(shù)
,使得對任意
,均有
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com