日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在的棱長為1的正四面體ABCD中,E是BC的中點,則
AE
CD
=( 。
A、0
B、
1
2
C、-
1
2
D、-
1
4
分析:本題考查的知識點是平面向量的數(shù)量積的定義及向量夾角的概念,由該題的已知應(yīng)先求出
AE
CD
的夾角
解答:精英家教網(wǎng)由題意作以下圖形:
∵正四面體ABCD的棱長為1,取BC,BD的中點E,F(xiàn),則
EF
=
1
2
CD
,
∵正四面體ABCD的所有棱長為1∴|
AE
|=
3
2
=AF|
EF
|=
1
2
;
在△AEF中有余弦定理可知cos∠AEF=
3
6
,
∴cos<
AE
,
CD
>=-
3
6

由平面向量的數(shù)量積的定義可知
AE
CD
=|
AE
|•|
CD
|•cos<
AE
,
CD
>=
3
2
×1×(-
3
6
)=-
1
4
;
故選D.
點評:在此題中要注意向量夾角概念中兩向量必需共起點此處學(xué)生最易錯
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

(2)平面幾何中有正確命題:“正三角形內(nèi)任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:
正四面體內(nèi)任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
正四面體內(nèi)任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 亚洲视频免费观看 | 一级片在线观看 | 一道本视频| 亚洲日韩欧美一区二区在线 | 成人精品网 | 男女羞羞视频免费观看 | 国产羞羞视频在线观看 | 久久精品欧美一区二区三区麻豆 | 亚洲精品一区二区三区蜜桃久 | av一区二区三区 | 久久国产欧美日韩精品 | 国产精品日韩欧美 | 欧美一区久久 | 国产视频99 | 免费的av网站 | 农村妇女毛片精品久久久 | 黄色99| 亚洲精品www | 亚洲日韩视频免费观看 | 国产在线啪 | 超碰中文字幕 | 日韩在线免费视频 | www中文字幕| 福利视频网址 | 久久亚洲一区二区三区四区 | 神马久久精品 | 一级视频毛片 | 手机看片国产精品 | 91在线免费视频 | 99久久99久久免费精品蜜臀 | 亚洲午夜精品 | 超碰在线网| 成人三级黄色 | 日本h视频在线观看 | 欧洲成人午夜免费大片 | 日韩在线一区二区 | 久久国产成人 | 欧美精品三区 | 91在线精品秘密一区二区 | 国产一国产寡妇一级毛片 | 超碰8 |