【題目】如圖,在底面為平行四邊形的四棱錐中,過點
的三條棱PA、AB、AD兩兩垂直且相等,E,F分別是AC,PB的中點.
(Ⅰ)證明:EF//平面PCD;
(Ⅱ)求EF與平面PAC所成角的大小.
【答案】(Ⅰ)見解析; (Ⅱ)見解析.
【解析】
(Ⅰ)連接BD,則E是BD的中點,F是PB的中點得EF//PD。線面平行轉化為線線平行。
(Ⅱ)首先找出EF與平面PAC所成的角,由題意可得EF與平面PAC所成的角的大小等于。根據條件得
,所以
。
(Ⅰ)證明:如圖,連接BD,則E是BD的中點
又F是PB的中點,∴ EF//PD,
∵ EF不在平面PCD內,∴ EF//平面PCD。
(Ⅱ)連接PE,∵ ABCD是正方形,∴
又平面
,∴
。
∴平面
,故
是PD與平面PAC所成的角,
∵EF//PD,∴EF與平面PAC所成的角的大小等于
∵PA=AB=AD,,
∴≌
,因此PD=BD
在中,
,
∴EF與平面PAC所成角的大小是。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R,都有f(x)≥x,且,令g(x)=f(x)﹣|λx﹣1|(λ>0).
(1)求函數f(x)的表達式;
(2)求函數g(x)的單調區間;
(3)當λ>2時,判斷函數g(x)在區間(0,1)上的零點個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( ) (參考數據: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P為函數f(x)=lnx的圖象上任意一點,點Q為圓[x﹣(e+ )]2+y2=1任意一點,則線段PQ的長度的最小值為( )
A.
B.
C.
D.e+ ﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,橢圓
上一點
到左右兩個焦點
的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓
交于
兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的不等式:|2x﹣m|≤1的整數解有且僅有一個值為2.
(Ⅰ)求整數m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com