日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】在四棱錐P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中點,面PACABCD

(1)證明:ED∥面PAB

(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

【答案】(Ⅰ)證明過程如解析;(Ⅱ)

【解析】試題分析:Ⅰ)取PB的中點F,連接AF,EF,由三角形的中位線定理可得四邊形ADEF是平行四邊形.得到DEAF,再由線面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中點M,連接AM,由題意證得A在以BC為直徑的圓上,可得ABAC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.

試題解析:(Ⅰ)證明:取PB的中點F,連接AF,EF.

∵EF是△PBC的中位線,∴EF∥BC,且EF=

又AD=BC,且AD=,∴AD∥EF且AD=EF,

則四邊形ADEF是平行四邊形.

∴DE∥AF,又DE面ABP,AF面ABP,∴ED∥面PAB

(Ⅱ)法一、取BC的中點M,連接AM,則AD∥MC且AD=MC,

∴四邊形ADCM是平行四邊形,

∴AM=MC=MB,則A在以BC為直徑的圓上.∴AB⊥AC,可得

過D作DG⊥AC于G,

∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,

∴DG⊥平面PAC,則DG⊥PC.

過G作GH⊥PC于H,則PC⊥面GHD,連接DH,則PC⊥DH,

∴∠GHD是二面角A﹣PC﹣D的平面角.

在△ADC中,,連接AE,

在Rt△GDH中,

即二面角A﹣PC﹣D的余弦值

法二、取BC的中點M,連接AM,則AD∥MC,且AD=MC.

∴四邊形ADCM是平行四邊形,

∴AM=MC=MB,則A在以BC為直徑的圓上,

∴AB⊥AC.

∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.

如圖以A為原點,方向分別為x軸正方向,y軸正方向建立空間直角坐標系.

可得

設P(x,0,z),(z>0),依題意有

解得

設面PDC的一個法向量為

,取x0=1,得

為面PAC的一個法向量,且

設二面角A﹣PC﹣D的大小為θ,

則有,即二面角A﹣PC﹣D的余弦值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若復數(shù)z1﹣z2在復平面上對應點落在第一象限,求實數(shù)a的取值范圍;
(2)若虛數(shù)z1是實系數(shù)一元二次方程x2﹣6x+m=0的根,求實數(shù)m值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax+b的值域為(﹣∞,0],若關x的不等式 的解集為(m﹣4,m+1),則實數(shù)c的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:f(x)=2 cos2x+sin2x﹣ +1(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的單調增區(qū)間;
(3)若x∈[﹣ ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌茶壺的原售價為80元/個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購買一個茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;…,一次購買的茶壺數(shù)每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個;乙店一律按原價的75%銷售.現(xiàn)某茶社要購買這種茶壺x個,如果全部在甲店購買,則所需金額為y1元;如果全部在乙店購買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)該茶社去哪家茶具店購買茶壺花費較少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a(a<0),使得f(x)在閉區(qū)間 上的最大值為2,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某倉庫為了保持庫內的濕度和溫度,四周墻上均裝有如圖所示的自動通風設施.該設施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設施邊框上下滑動且始終保持和AB平行的伸縮橫桿.

(1)設MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成年人网站免费在线观看 | 91精品国产综合久久久久久蜜月 | 黄色av网站在线免费观看 | 激情网页| 欧美日韩中文在线观看 | 国产毛片视频 | 成人免费视频一区二区三区 | 日本在线播放 | 亚洲精品一区二区另类图片 | 99精品视频在线 | 色婷婷一区二区三区四区 | 日本免费黄色 | 免费小毛片 | 涩涩在线 | 日韩欧美在线观看一区二区三区 | 欧美全黄 | 亚洲精品午夜视频 | 欧美黑人一区 | a在线v | 国产 日韩 欧美 中文 在线播放 | 欧美一区在线视频 | 亚洲视频一区二区 | 在线观看黄av| 欧美精品久久久 | 成年免费视频黄网站在线观看 | 久久99国产一区二区三区 | 国产亚洲一区二区三区在线观看 | 成人精品一区二区三区电影黑人 | 日本精品视频在线 | av一二三四| 日韩精品欧美在线 | 午夜精品一区二区三区免费视频 | 久久精品在线观看视频 | 欧美在线综合视频 | 欧美激情国产日韩精品一区18 | 成人黄色在线观看 | 日本精品视频在线观看 | 亚洲国产成人在线 | 亚洲精品一区二区三区麻豆 | 国产视频一视频二 | 精品1区2区 |