解:(1)因為數(shù)列{a
n}滿足a
n=-3•2
n+5(n∈N
+),
所以

=

=2(n∈N
+);
所以,數(shù)列{a
n}是等差比數(shù)列,且公差比p=2.
(2)因為數(shù)列{b
n}是等差比數(shù)列,且公差比p=2,
所以,

=2(n≥2),即數(shù)列{b
n-b
n-1}是以(b
2-b
1)為首項,公比為2的等比數(shù)列;
b
n-b
n-1=(b
2-b
1)•2
n-2=2
n-1(n≥2);
于是,b
n-b
n-1=2
n-1,b
n-1-b
n-2=2
n-2,…,b
2-b
1=2;
將上述n-1個等式相加,得
b
n-b
1=2+2
2+2
3+…+2
n-1=

=2
n-2;
∴數(shù)列{b
n}的通項公式為b
n=2
n(n∈N
+).
(3)由(2)可知,s
n=b
1+b
2+b
3+…+b
n=2+2
2+2
3+…+2
n=2
n+1-2;
于是,

=

=2(n∈N
+);
所以,數(shù)列{s
n}是等差比數(shù)列,且公差比為p=2.
分析:(1)把數(shù)列{a
n}的通項a
n=-3•2
n+5代入定義公式

,可證得{a
n}是等差比數(shù)列.
(2)由等差比數(shù)列的定義知,

=2(n≥2),得數(shù)列{b
n-b
n-1}是等比數(shù)列,其通項公式為b
n-b
n-1=2
n-1(n≥2);用疊加法可得b
n-b
1=…=2
n-2;從而得數(shù)列{b
n}的通項公式.
(3)由s
n=b
1+b
2+b
3+…+b
n=…=2
n+1-2;代入定義公式

,可證得數(shù)列{s
n}是等差比數(shù)列,且公差比為2.
點評:本題以新定義公式為載體,考查了等比數(shù)列的通項公式,前n項和公式的靈活應用;也考查了一定的計算能力,是中檔題.