【答案】
分析:(1)根據(jù)DA⊥AB,平面ACD經(jīng)過平面BCD的垂線,根據(jù)面面垂直的判定定理可知平面ACD⊥平面BCD,從而得到BC⊥平面ACD
,則BC⊥DA,AB∩BC=B,滿足線面垂直的判定定理所需條件;
(2)設(shè)求點(diǎn)C到平面ABD的距離為d,由(1)結(jié)論可知DA⊥平面ABC,則DA是三棱錐D-ABC的高,根據(jù)V
C-ABD=V
D-ABC建立等式關(guān)系,解之即可求出所求;
(3)先證平面ABD⊥平面FGC,在平面ABD內(nèi)作EH⊥FG,垂足為H,作HK⊥FC,垂足為K,連接EK,故EK⊥FC,從而∠EKH為二面角E-FC-G的平面角,在Rt△FEC中求出此角即可.
解答:解:(1)證明:依條件可知DA⊥AB①
∵點(diǎn)A在平面BCD上的射影落在DC上,即平面ACD經(jīng)過平面BCD的垂線
∴平面ACD⊥平面BCD
又依條件可知BC⊥DC,∴BC⊥平面ACD
∵DA?平面ACD∴BC⊥DA②∵AB∩BC=B,∴由①、②得DA⊥平面ABC …4分
(2)解:設(shè)求點(diǎn)C到平面ABD的距離為d,于是V
C-ABD=V
D-ABC由(1)結(jié)論可知DA⊥平面ABC,∴DA是三棱錐D-ABC的高
∴由V
C-ABD=V
D-ABC,得

,解得

即點(diǎn)C到平面ABD的距離為

…8分
(3)解:由(I)結(jié)論可知DA⊥平面ABC,∵AC、CG?平面ABC
∴DA⊥AC①DA⊥CG②
由①得△ADC為直角三角形,易求出AC=1
于是△ABC中AC=BC=1
∵G是等腰△ABC底邊AB的中點(diǎn),∴CG⊥AB③∵AB∩DA=A④∴由②、③、④得CG⊥平面ABD
∵CG?平面FGC∴平面ABD⊥平面FGC
在平面ABD內(nèi)作EH⊥FG,垂足為H∴EH⊥平面FGC
作HK⊥FC,垂足為K,連接EK,故EK⊥FC
∴∠EKH為二面角E-FC-G的平面角 …10分
設(shè)Rt△ABD邊BD上的高為h,容易求出

,∴

在△EFC中,容易求出

三邊長滿足FC
2=FE
2+EC
2,∴∠FEC=90°
于是在Rt△FEC中容易求出

,∴

…12分
于是二面角E-FC-G的大小為

…13分
點(diǎn)評:本題主要考查了線面垂直的判定,點(diǎn)面距離的定理和二面角平面角的度量,同時考查了空間想象能力和邏輯推理能力,屬于中檔題.