(本小題滿分14分)
若函數 (a,b∈R),且其導函數f′ (x)的圖象過原點.
(Ⅰ)當a=1時,求函數f(x)的圖象在x=3處的切線方程;
(Ⅱ)若存在x<0使得f′ (x)=-9,求實數a的最大值.
(Ⅰ) 3x-y-8=0. (Ⅱ) a的最大值為.
【解析】第一問,根據導函數圖象過原點得b=0,然后就可以求出切線方程;第二問分離出參數a利用基本不等式可以得到a的最大值或者根據一元二次方程根的分布求出a的最大值。
解:,f′ (x)=x2-(a+1)x+b,
……1分
由f′ (0)=0得 b=0,f′ (x)=x(x-a-1). ……3分
(Ⅰ)當a=1時, ,f′ (x)=x(x-2),f(3)=1,f′ (3)=3. ……5分
所以函數f(x)的圖像在x=3處的切線方程為y-1=3(x-3), ……6分
即3x-y-8=0. ……7分
(Ⅱ)存在,使x<0得f′ (x)=x(x-a-1)=-9,
,a≤-7, ……10分
當且僅當x=-3時,a=-7. ……12分
所以a的最大值為-7. ……14分
(Ⅱ)另解:由題意“存在x<0,使得f′ (x)=x(x-a-1)=-9”有
方程x2-(a+1)x+9=0有負數根. ……8分
又因為兩根之積等于9>0,所以兩根均為負數. ……10分
則
……12分
解得a≤-7, ……13分
所以a的最大值為.
……14分
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com