(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
(1);(2)
的取值范圍是
;(3)見解析。
【解析】
試題分析:(Ⅰ)求導函數,利用圖象在點(1,f(1))處的切線與直線y=2x+1平行,可得f′(1)=a-b=2,即可求a,b滿足的關系式;
(Ⅱ)由(Ⅰ)知,構造新函數g(x)=f(x)-2lnx=
-2lnx,x∈[1,+∞)則根據g(1)=0,g′(x),比較對應方程根的大小,進行分類討論,即可求得a的取值范圍;
(1),根據題意
,即
………3分
(2)由(1)知,,………4分
令,
則,
=
………5分
①當時,
,
若,則
,
在
為減函數,存在
,
即在
上不恒成立.
………6分
②時,
,當
時,
,
在
增函數,又
,
∴,∴
恒成立.………7分
綜上所述,所求的取值范圍是
…………8分
(3)由(2)知當時,
在
上恒成立.取
得
令,
得
,
即 ……10分
∴ ………11分
上式中令n=1,2,3,…,n,并注意到:
然后n個不等式相加得到 ………14分
考點:本試題主要考查了導數知識的運用,考查恒成立問題,考查不等式的證明。屬于中檔試題。
點評:解決該試題的關鍵是正確求出導函數,構造新函數,利用函數的單調性解題,這是解決一般不等式恒成立問題的常用的方法,也是比較重要的方法。
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com