【題目】下列命題一定正確的是( )
A.在等差數列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數列{an}的前n項和為Sn , 若{an}是等比數列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數列
C.在數列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數列
D.在數列{an}中,若ap?aq=a ,則ap , ar , aq成等比數列
【答案】C
【解析】解:A.在等差數列{an}中,若ap+aq=ar+aδ , 公差d=0,則p+q=r+δ不一定正確;
B.在數列{an}的前n項和為Sn , 若{an}是等比數列,必須Sk , S2k﹣Sk , S3k﹣S2k是不等于0時,成Sk , S2k﹣Sk , S3k﹣S2k也是等比數列,因此不正確;
C.在數列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數列,正確;
D.在數列{an}中,若apaq=a ,則ap , ar , aq不一定成等比數列,沒有條件an≠0.
故選:C.
【考點精析】關于本題考查的等差關系的確定和等比關系的確定,需要了解如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,即-
=d ,(n≥2,n∈N
)那么這個數列就叫做等差數列;等比數列可以通過定義法、中項法、通項公式法、前n項和法進行判斷才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】(本題滿分15分)如圖,已知四棱錐P–ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠要建造一個長方體無蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價為300元,池壁每1m2的造價為240元,問怎樣設計水池能使總造價最低,最低總造價是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
:
(
為參數,
),在以坐標原點為極點,
軸的非負半軸為極軸的極坐標系中,曲線
:
.
(1)試將曲線與
化為直角坐標系
中的普通方程,并指出兩曲線有公共點時
的取值范圍;
(2)當時,兩曲線相交于
,
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,底面
為菱形,
,
,
與
相交于
點,四邊形
為直角梯形,
,
,
,平面
底面
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(ωx+φ)(ω>0,|φ|< )在一個周期內的圖像如圖所示,其中M(
,2),N(
,0).
(1)求函數f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且a= ,c=3,f(
)=
,求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com