A. | f(x)在(0,$\frac{π}{4}$)上單調遞減 | B. | f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調遞減 | ||
C. | f(x)在(0,$\frac{π}{4}$)上單調遞增 | D. | f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調遞增 |
分析 利用輔助角化簡函數f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ$+\frac{π}{4}$)是奇函數,可得φ$+\frac{π}{4}$=kπ,解出φ,直線y=$\sqrt{2}$與函數f(x)的圖象的兩個相鄰交點的距離為$\frac{π}{2}$,可得周期T=$\frac{π}{2}$,求出ω,可得f(x)的解析式,從而判斷各選項即可.
解答 解:化簡函數f(x)=sin(ωx+φ)+cos(ωx+φ)=$\sqrt{2}$sin(ωx+φ$+\frac{π}{4}$)
∵f(x)是奇函數,
∴φ$+\frac{π}{4}$=kπ,k∈Z.即φ=k$π-\frac{π}{4}$.
∵0<φ<π
∴φ=$\frac{3π}{4}$.
又∵直線y=$\sqrt{2}$與函數f(x)的圖象的兩個相鄰交點的距離為$\frac{π}{2}$,
可得周期T=$\frac{π}{2}$,即$\frac{2π}{ω}=\frac{π}{2}$,
∴ω=4.
∴f(x)的解析式為f(x)=$\sqrt{2}$sin(4x+$\frac{3π}{4}$),
令2kπ$-\frac{π}{2}≤$4x+$\frac{3π}{4}$$≤\frac{π}{2}$+2kπ,單調遞增.
可得:$\frac{1}{2}kπ$$-\frac{5π}{16}≤x≤-\frac{π}{16}$+$\frac{1}{2}kπ$,k∈Z.
∴C選項對.D選項不對.
令2kπ+$\frac{π}{2}$≤4x+$\frac{3π}{4}$$≤\frac{3π}{2}$+2kπ,單調遞減.
可得:$\frac{1}{2}kπ$$-\frac{π}{16}≤x≤\frac{3π}{16}$$+\frac{1}{2}kπ$,k∈Z.
∴A,B選項不對.
故選C.
點評 本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{5}$ | B. | -$\frac{\sqrt{10}}{5}$ | C. | $\frac{\sqrt{15}}{5}$ | D. | -$\frac{\sqrt{15}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
實驗操作 | |||||
不合格 | 合格 | 良好 | 優秀 | ||
體能測試 | 不合格 | 0 | 1 | 1 | 1 |
合格 | 0 | 2 | 1 | b | |
良好 | 1 | a | 2 | 4 | |
優秀 | 1 | 1 | 3 | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com