日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
4
+y2=1

(1)過橢圓上點P作x軸的垂線PD,D為垂足,當點P在橢圓上運動時,求線段PD中點M的軌跡方程;
(2)若直線x-y+m=0與已知橢圓交于A、B兩點,R(0,1),且|RA|=|RB|,求實數m的值.
(1)設PD中點M(x,y),P(x′,y′),依題意x=x′,y=
y′
2

∴x′=x,y′=2y
又點P在
x2
4
+y2=1
上,∴
x′2
4
+y′2=1
,即
x2
4
+4y2=1

∴線段PD的中點M軌跡方程為
x2
4
+4y2=1

(2)設A(x1,y1),B(x2,y2),則
直線x-y+m=0與已知橢圓方程聯立,消去y可得
5
4
x2+2mx+m2-1=0

∴x1+x2=-
8m
5

∴y1+y2=x1+x2+2m=
2m
5

∴AB的中點坐標為(-
4m
5
m
5

∵R(0,1),且|RA|=|RB|,
m
5
-1
-
4
5
m
×1=-1

m=-
5
3
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知橢圓
x24
+y2=1
的左、右兩個頂點分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點,經過三點A,M,N的圓與經過三點B,M,N的圓分別記為圓C1與圓C2
(1)求證:無論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當t變化時,求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
4
+y2=1
,過E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點,已知kABkCD=-
1
4

(1)若AB的中點為M,CD的中點為N,求證:①kOMkON=-
1
4
為定值,并求出該定值;②直線MN過定點,并求出該定點;
(2)求四邊形ACBD的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現隨機向橢圓內丟一粒豆子,則豆子落在圖中陰影范圍內的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長半軸長,b是橢圓短半軸長)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•朝陽區三模)已知橢圓
x2
4
+y2=1
的焦點分別為F1,F2,P為橢圓上一點,且∠F1PF2=90°,則點P的縱坐標可以是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x24
+y2=1
,過點M(-1,0)作直線l交橢圓于A,B兩點,O是坐標原點.
(1)求AB中點P的軌跡方程;
(2)求△OAB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线不卡一区 | 成人小视频在线观看 | 久久伦理中文字幕 | 久久久久久一区 | 羞羞小视频在线观看 | 亚洲国产精品精华液网站 | 91一区在线 | 久久久网 | 黄色大片免费网站 | 九九福利 | 久久国产精品91 | 国产1页| 欧美成人黑人xx视频免费观看 | 91精品国产麻豆 | 久久国产精品久久久久久 | 日本欧美亚洲 | 国内外成人在线视频 | 九九色九九 | 吴梦梦到粉丝家实战华中在线观看 | 欧美成人影院在线 | 亚洲精品9999 | 99久久免费精品国产男女性高好 | 欧美日韩成人在线观看 | 国产精品特级毛片一区二区三区 | 99精品欧美一区二区三区 | av在线入口 | 日本xxxxxxx | 欧美人成在线观看 | 欧美日韩久久精品 | 精品亚洲永久免费精品 | 精品一区二区在线免费观看 | 国产精品日本一区二区不卡视频 | 久久美女视频 | 精品一区二区网站 | 欧美激情在线免费观看 | 日韩精品在线视频 | 麻豆精品国产91久久久久久 | 国产在线a| 欧美喷潮久久久xxxxx | 三级av| 国产精品视频一区二区三区四区五区 |