【題目】已知函數y=Asin(ωx+φ)(A>0,ω>0)的圖象過點P ,圖象與P點最近的一個最高點坐標為
.
(1)求函數解析式;
(2)求函數的最大值,并寫出相應的x的值;
(3)求使y≤0時,x的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心是坐標原點,焦點在
軸上,離心率為
,又橢圓上任一點到兩焦點的距離和為
.過右焦點
與
軸不垂直的直線
交橢圓于
,
兩點.
(1)求橢圓的方程;
(2)在線段上是否存在點
,使得
?若存在,求出
的取值范圍;若不存在,請
說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
,
).
(1)若的部分圖像如圖所示,求
的解析式;
(2)在(1)的條件下,求最小正實數,使得函數
的圖象向左平移
個單位后所對應的函數是偶函數;
(3)若在
上是單調遞增函數,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以直角坐標系原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的極坐標方程,并說明其表示什么軌跡;
(2)若直線的極坐標方程為,求直線被曲線
截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱ABC-A1B1C1中,側棱垂直于底面,AC=BC,點D是AB的中點.
(1)求證:BC1∥平面CA1D;(2)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數為4的3件日用品記為,等級系數為5的2件日用品記為
,現從
,
這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數恰好相等的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某棋類游戲的規則如下:棋子的初始位置在起點處,玩家每擲出一枚骰子,朝上一面的點數即為向終點方向前進的格子數,(比如玩家一開始擲出的骰子點數為3,則走到炸彈所在位置),若踩到炸彈則返回起點重新開始,若達到終點則游戲結束.現在已知小明擲完三次骰子后游戲恰好結束,則所有不同的情況種數為__________.
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列和函數
,若
,則稱
是數列
的母函數.
(Ⅰ)定義在上的函數
滿足:對任意
,都有
,且
;又數列
滿足
.
(1)求證: 是數列
的母函數;
(2)求數列的前項
和
.
(Ⅱ)已知是數列
的母函數,且
.若數列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠2萬元設計了某款式的服裝,根據經驗,每生產1百套該款式服裝的成本為1萬元,每生產(百套)的銷售額(單位:萬元)
.
(1)若生產6百套此款服裝,求該廠獲得的利潤;
(2)該廠至少生產多少套此款式服裝才可以不虧本?
(3)試確定該廠生產多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設計費+生產成本)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com