日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且
(Ⅰ)當a=1時,求f(x)在x=1處的切線方程;
(Ⅱ)當2≤a<9時,設f(x)=f2(x)所對應的自變量取值區間的長度為l(閉區間[m,n]的長度定義為n-m),試求l的最大值;
(Ⅲ)是否存在這樣的a,使得當x∈[2,+∞)時,f(x)=f2(x)?若存在,求出a的取值范圍;若不存在,請說明理由.
【答案】分析:(Ⅰ)本問中要代入a=1后,注意f1(x)與f2(x)的大小比較,以便于求出f(x)的解析式,進而利用函數的導數概念解決問題.
(Ⅱ)本問中借鑒上問(1)的解題思想,由具體到一般,方法依然是針對a的范圍條件,作差比較出f1(x)與f2(x)的大小,
在2≤a<9時,自變量x取哪些值時f(x)=f2(x),進而確定求出f(x)的解析式,對參數的討論要結合具體的數值,從直觀到抽象采取分類策略.
(Ⅲ)本問利用(2)的結論容易求解,需要注意的是等價轉化思想的應用,分類討論思想重新在本問中的體現.
解答:解:(Ⅰ)當a=1時,f2(x)=|3x-9|.
因為當x∈(0,log35)時,f1(x)=3x-1,f2(x)=9-3x
且f1(x)-f2(x)=2•3x-10<2•3log35-10=2•5-10=0,
所以當x∈(0,log35)時,f(x)=3x-1,且1∈(0,log35)(3分)
由于f'(x)=3xln3,所以k=f'(1)=3ln3,又f(1)=2,
故所求切線方程為y-2=(3ln3)(x-1),
即(3ln3)x-y+2-3ln3=0(5分)

(Ⅱ)因為2≤a<9,所以,則
①當時,因為a•3x-9≥0,3x-1>0,
所以由f2(x)-f1(x)=(a•3x-9)-(3x-1)=(a-1)3x-8≤0,解得
從而當時,f(x)=f2(x)(6分)
②當時,因為a•3x-9<0,3x-1≥0,
所以由f2(x)-f1(x)=(9-a•3x)-(3x-1)=10-(a+1)3x≤0,解得
從而當時,f(x)=f2(x)(7分)
③當x<0時,因為f2(x)-f1(x)=(9-a•3x)-(1-3x)=8-(a-1)3x>0,
從而f(x)=f2(x)一定不成立(8分)
綜上得,當且僅當時,f(x)=f2(x),
(9分)
從而當a=2時,l取得最大值為(10分)

(Ⅲ)“當x∈[2,+∞)時,f(x)=f2(x)”
等價于“f2(x)≤f1(x)對x∈[2,+∞)恒成立”,
即“|a•3x-9|≤|3x-1|=3x-1(*)對x∈[2,+∞)恒成立”(11分)
①當a≥1時,,則當x≥2時,
則(*)可化為a•3x-9≤3x-1,即,而當x≥2時,
所以a≤1,從而a=1適合題意(12分)
②當0<a<1時,
(1)當時,(*)可化為a•3x-9≤3x-1,即,而
所以a≤1,此時要求0<a<1((13分)
(2)當時,(*)可化為
此時只要求0<a<9(14分)
(3)當時,(*)可化為9-a•3x≤3x-1,即,而
所以,此時要求(15分)
由(1)(2)(3),得符合題意要求.
綜合①②知,滿足題意的a存在,且a的取值范圍是(16分)
點評:本題考查分段函數的有關概念,函數求值的問題;對函數的導數的概念亦有所考查,含參數的數學問題的討論,注重對分類討論思想,數形結合思想的考查,考查了對近年來高考真題中出現的有關恒成立問題,存在性問題的求解策略,對函數知識的綜合性解題能力有很高的要求,屬于壓軸題的題目難度.本題的求解策略是細讀題意,精確分析采取有難到易,各點擊破的思想,同時注意解題思想的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f1(x)=x(x≠0),若對任意的n∈N*,fw(1)=1,且fmax(x)=fv(x)+xfne(x).
(1)求fn(x)的解析式;
(2)設Fn(x)=
fn(x)(fn(x)+1)2
,求證:F1(2)+F2(2)+…Fn(2)<1;
(3)若ge(x)=C6020+2C601f1(x)+3C602f2(x)+…+(n+1)Cnxfn(x),是否存在實數x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)a,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知⊙F1(x+
3
)2+y2=16
F2(
3
,0)
,在⊙F1上取點P,連接PF2,作出線段PF2的垂直平分線交PF1于M,當點P在⊙F1上運動時M形成曲線C.(如圖)
(1)求曲線C的軌跡方程.
(2)過點F2的直線l交曲線C于R,T兩點,滿足|RT|=
3
2
,求直線l的方程.
(3)點Q在曲線C上,且滿足F1QF2=
π
3
,求SF1F2Q

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函數f(x)定義為:對每個給定的實數x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)對所有實數x都成立,求a的取值范圍;
(2)設t∈R,t>0,且f(0)=f(t).設函數f(x)在區間[0,t]上的單調遞增區間的長度之和為d(閉區間[m,n]的長度定義為n-m),求
d
t

(3)設g(x)=x2-2bx+3.當a=2時,若對任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f1(x)=log3x,f2(x)=(x+3)
1
2
+1
,f3(x)=tanx,則f1[f2(f3(
π
4
))]
=
1
1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函數f(x)定義為:對每個給定的實數x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)對所有實數x都成立,求a的取值范圍;
(2)設t∈R,t>0,且f(0)=f(t).設函數f(x)在區間[0,t]上的單調遞增區間的長度之和為d(閉區間[m,n]的長度定義為n-m),求
d
t

(3)設g(x)=x2-2bx+3.當a=2時,若對任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 爱爱爱av | 久久一区视频 | 一区二区欧美在线 | 国产欧美精品一区二区 | 日本欧美在线观看 | 91麻豆精品国产91久久久久久 | 求av网站 | 黄色av影院 | 国产精品美女久久久 | 国产精品三级久久久久久电影 | 亚洲天堂一区 | www.久久精品| 日本天堂网站 | 日韩手机在线视频 | 91久久久久久久久久久久久久 | 国产精品高潮呻吟久久a | 国产极品美女在线精品图片 | 欧美日韩一区二区视频在线观看 | xxx在线观看 | 欧美视频二区 | 国产精品久久 | 鲁视频| 亚洲高清资源在线 | 国产一区二区三区四区视频 | 人人玩人人干 | 精品一区二区三区久久 | 91精品国产91久久久久久蜜臀 | 精品国产影院 | 中文字幕免费中文 | 国产91亚洲精品 | 黄影院| 黄色毛片视频在线观看 | 狠狠操天天干 | 亚洲精品一区二区三区蜜桃久 | 久久91精品久久久久久9鸭 | 超碰97成人 | 97av| 精品视频免费在线 | 欧美精品一区二区蜜臀亚洲 | 欧美成人一区二区三区片免费 | av 一区二区三区 |