(本題滿分15分)
已知函數在x=±1處取得極值
(1)求函數的解析式;
(2)求證:對于區間[-1,1]上任意兩個自變量的值x1,x2,都有≤4;
(3)若過點A(1,m)(m ≠-2)可作曲線的三條切線,求實數m的范圍。
(1)f(x)=x3-3x
(2)略
(3-3<m<-2)
【解析】解: (1)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,
即
………………… 2分
解得a=1,b=0.
∴f(x)=x3-3x. ……………………… 4分
(2)∵f(x)=x3-3x,∴f ′(x)=3x2-3=3(x+1)(x-1),
當-1<x<1時,f ′ (x)<0,故f(x)在區間[-1,1]上為減函數,
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2 …………………… 6分
∵對于區間[-1,1]上任意兩個自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x) -fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4 ……………… 8分
(3)f′(x)=3x2-3=3(x+1)(x-1),
∵曲線方程為y=x3-3x,∴點A(1,m)不在曲線上.
設切點為M(x0,y0),則點M的坐標滿足
因,故切線的斜率為
,
整理得.
∵過點A(1,m)可作曲線的三條切線,
∴關于x0方程=0有三個實根. ……………… 11分
設g(x0)= ,則g′(x0)=6
,
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上單調遞增,在(0,1)上單調遞減.
∴函數g(x0)= 的極值點為x0=0,x0=1 …………… 13分
∴關于x0方程=0有三個實根的充要條件是
,解得-3<m<-2.
故所求的實數a的取值范圍是-3<m<-2. …………… 15分
科目:高中數學 來源:2010-2011年江蘇省如皋市五校高二下學期期中考試理科數學 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經設置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產生一個 1~6的整數數作為號碼,若該號碼是3的倍數則顧客獲獎,每次中獎的獎金為100元,運用所學的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省招生適應性考試文科數學試卷(解析版) 題型:解答題
(本題滿分15分)設函數.
(Ⅰ)若函數在
上單調遞增,在
上單調遞減,求實數
的最大值;
(Ⅱ)若對任意的
,
都成立,求實數
的取值范圍.
注:為自然對數的底數.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省溫州市十校聯合體高三上學期期初摸底文科數學 題型:解答題
(本題滿分15分)已知直線與曲線
相切
1)求b的值;
2)若方程在
上恰有兩個不等的實數根
,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省溫州市十校聯合體高三上學期期中考試文科數學 題型:解答題
(本題滿分15分)已知拋物線:
(
),焦點為
,直線
交拋物線
于
、
兩點,
是線段
的中點,
過作
軸的垂線交拋物線
于點
,
(1)若拋物線上有一點
到焦點
的距離為
,求此時
的值;
(2)是否存在實數,使
是以
為直角頂點的直角三角形?若存在,求出
的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省六校高三第一次聯考文科數學 題型:解答題
(本題滿分15分)
已知函數
(1)求的單調區間;
(2)設,若
在
上不單調且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com