日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知P,Q分別是直線l:2x-y-5=0和圓C:(x-1)2+(y-2)2=3上的兩個動點,且直線PQ與圓C相切,則|PQ|的最小值是
2
2
分析:結合圖形,由題意知,PQ2+CQ2=CP2,要求|PQ|的最小值即是求|CP|的最小值,而|CP|的最小值為圓心C到直線l的距離,進而可求出|PQ|的最小值.
解答:解:由于圓C:(x-1)2+(y-2)2=3,
則C(1,2),半徑r為:
3

又由直線PQ與圓C相切,
故|PQ|2+|CQ|2=|CP|2,即|PQ|2=|CP|2-|CQ|2=|CP|2-3,
由于C(1,2)到直線l:2x-y-5=0的距離為:
|2×1-1×2-5|
22+12
=
5

故|PQ|2min=5-3=2,故|PQ|的最小值是
2

故答案為:
2
點評:本題考查直線與圓的位置關系,考查計算能力以及轉化思想的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個動點,線段AB的長為2
3
,D是AB的中點.
(1)求動點D的軌跡C的方程;
(2)過點N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點,若在線段ON上存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:044

已知PQ分別是圓x2+y2=r2r>0y軸和拋物線y2=xx軸上方的交點,直線PQx軸與M點,當半徑r趨近于零時,求M點的極限位置。

 

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

已知PQ分別是圓x2+y2=r2r>0y軸和拋物線y2=xx軸上方的交點,直線PQx軸與M點,當半徑r趨近于零時,求M點的極限位置。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知P,Q分別是直線和圓上的兩個動點,且直線PQ與圓C相切,則︱PQ︱的最小值是__.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩综合精品 | 国产亚洲一区二区av | 色噜噜一区二区 | 91久久精品一区二区二区 | 日韩久久一区二区三区 | 亚洲欧美中文字幕在线观看 | 一级看片 | 国产成人精品一区二区三区 | 国产婷婷精品av在线 | 免费黄色毛片视频 | 最新日韩av| 精品欧美激情在线观看 | 国产精品久久久久久久久久久久久久 | 午夜视频网站 | 国产精品视频网 | 欧美激情首页 | 中文字幕在线视频免费观看 | 欧美一级在线观看 | 国际精品久久 | 天堂av一区二区 | 日韩av在线影院 | 中文字幕在线电影 | 美女扒开内裤让男人桶 | 可以免费观看的av | 国产精品久久久久无码av | 亚洲视频在线观看网站 | 久久免费视频一区二区 | 欧美精品网站 | 久久成人在线视频 | 久久久夜夜夜 | 久久久久久成人精品 | 久久av一区二区三区 | 欧美极品视频 | 久久免费视频观看 | 高潮毛片又色又爽免费 | 亚洲精品色 | 在线观看欧美成人 | 综合久久综合久久 | 深夜成人小视频 | 在线观看视频一区二区 | 国产精品美女久久久久久久网站 |