③
分析:根據題意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0可得2f(x)=2f(x)f(0),進而分析可得f(0)=1,依次分析4個命題,對于①、令x=y=

,可得f(t)+f(0)=2f(

)
2,易得f(

)
2=±

,故①錯誤,對于②、令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),分析可得f(y)+f(-y)=0不恒成立,f(x)不是奇函數,故②錯誤,對于③、令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,可得f(x+t)=-f(x-t),進而可得f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),可以判斷③正確,對于④、根據題意,無法判斷f(x)的單調性,則④錯誤;綜合可得答案.
解答:根據題意,在f(x+y)+f(x-y)=2f(x)f(y)中,
令y=0可得,2f(x)=2f(x)f(0),又由f(x)不是常函數,即f(x)=0不恒成立,則f(0)=1,
依次分析4個命題可得:
對于①、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=y=

,可得f(t)+f(0)=2f(

)
2,
結合f(0)=1,f(t)=0,可得f(

)
2=

,則可得f(

)
2=±

,故①錯誤,
對于②、在f(x+y)+f(x-y)=2f(x)f(y)中,令x=0,可得f(y)+f(-y)=2f(0)f(y)=2f(y),f(y)+f(-y)=0不恒成立,f(x)不是奇函數,故②錯誤,
對于③、在f(x+y)+f(x-y)=2f(x)f(y)中,令y=t可得,在f(x+t)+f(x-t)=2f(x)f(t)=0,
即f(x+t)=-f(x-t),則f(x+3t)=-f(x+t)=f(x-t),即f(x+3t)=f(x-t),則f(x)是周期函數且一個周期為4t,③正確,
對于④、根據題意,無法判斷f(x)的單調性,則④錯誤;
故答案為③.
點評:本題考查抽象函數的應用,關鍵是根據題意,在f(x+y)+f(x-y)=2f(x)f(y)中,令y=0,求出f(0)的值,注意f(x)不是常函數,應該把f(0)=0舍去.