【題目】已知函數f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函數f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實數a的取值范圍.
【答案】解:(Ⅰ)∵f(x)=alnx﹣4x,
∴f′(x)= ,
∴f′(1)=a﹣4,
故切線方程為y=(a﹣4)x﹣a;
(Ⅱ)h(x)=alnx+x2﹣4x+3,
∴h′(x)= ,
①若△=16﹣8a≤0,即a≥2,則h′(x)≥0,
則h(x)在(1,+∞)上單調遞增,又h(1)=0,不符舍去
②若△>0,則a<2,
令h′(x)>0得x>1+ ,令h′(x)<0得0<x<1+
,
則h(x)在(0,1+ )上單調遞減,在(1+
,+∞)單調遞增,
又h(1)=0,則必有h(e)<0
即a+e2﹣4e+3<0,
∴a<﹣e2+4e﹣3
【解析】(Ⅰ)求導數,可得切線斜率,求出切點坐標,即可求函數f(x)在x=1處的切線方程;(Ⅱ)h(x)=alnx+x2﹣4x+3,求導數,分類討論,確定單調性,即可求實數a的取值范圍.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減).
科目:高中數學 來源: 題型:
【題目】函數f(x)是定義在R上的偶函數,且滿足f(x+2)=f(x).當x∈[0,1]時,f(x)=2x.若在區間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個不相等的實數根,則實數a的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,2)
D.(1,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足:
,且該函數的最小值為1.
(1)求此二次函數的解析式;
(2)若函數的定義域為
(其中
),問是否存在這樣的兩個實數
,
,使得函數
的值域也為
?若存在,求出
,
的值;若不存在,請說明理由.
(3)若對于任意的,總存在
使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象,若函數g(x)在區間[0,
]上單調遞增,則φ的取值范圍是( )
A.[ ,
]
B.[ ,
)
C.[ ,
]
D.[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0 , 2 )(x0>
)是拋物線C上一點,圓M與線段MF相交于點A,且被直線x=
截得的弦長為
|MA|,若
=2,則|AF|等于( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣k(
+lnx),若x=2是函數f(x)的唯一一個極值點,則實數k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M: 和點
,動圓P經過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com