【題目】已知二次函數f(x)=ax2﹣4x+c的值域為[0,+∞).
(1)判斷此函數的奇偶性,并說明理由;
(2)判斷此函數在[ ,+∞)的單調性,并用單調性的定義證明你的結論;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.
【答案】
(1)解:由二次函數f(x)=ax2﹣4x+c的值域為[0,+∞),得a>0且 ,
解得ac=4.
∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,從而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),
∴此函數是非奇非偶函數
(2)解:函數的單調遞增區間是[ ,+∞).設x1、x2是滿足
的任意兩個數,從而有
,∴
.又a>0,∴
,
從而 ,
即 ,從而f(x2)>f(x1),∴函數在[
,+∞)上是單調遞增
(3)解:f(x)=ax2﹣4x+c,又a>0, ,x∈[1,+∞)
當 ,即0<a≤2時,最小值g(a)=f(x0)=0
當 ,即a>2時,最小值
綜上,最小值
當0<a≤2時,最小值g(a)=0
當a>2時,最小值
綜上y=g(a)的值域為[0,+∞)
【解析】(1)由二次函數f(x)=ax2﹣4x+c的值域,推出ac=4,判斷f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函數是非奇非偶函數.(2)求出函數的單調遞增區間.設x1、x2是滿足 的任意兩個數,列出不等式,推出f(x2)>f(x1),即可判斷函數是單調遞增.(3)f(x)=ax2﹣4x+c,當
,即0<a≤2時,當
,即a>2時求出最小值即可.
【考點精析】通過靈活運用二次函數的性質,掌握當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領海的分界線,一艘巡邏艇在O處發現了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;
(2)若O與公海的最近距離20海里,要保證在領海內捕獲走私船(即不能截獲走私船的區域與公海不想交).則O,A之間的最遠距離是多少海里?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C: =1經過點(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點.
(1)求雙曲線C的方程;
(2)若l過原點,P為雙曲線上異于A,B的一點,且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過雙曲線的右焦點F1 , 是否存在x軸上的點M(m,0),使得直線l繞點F1無論怎樣轉動,都有 =0成立?若存在,求出M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (a>0,且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數解,則a的取值范圍是( )
A.(0, ]
B.[ ,
]
C.[ ,
]∪{
}
D.[ ,
)∪{
}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{bn}的前n項和為Sn , 且對任意正整數n,都有 ;
(1)試證明數列{bn}是等差數列,并求其通項公式;
(2)如果等比數列{an}共有2017項,其首項與公比均為2,在數列{an}的每相鄰兩項ai與ai+1之間插入i個(﹣1)ibi(i∈N*)后,得到一個新數列{cn},求數列{cn}中所有項的和;
(3)如果存在n∈N* , 使不等式 成立,若存在,求實數λ的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橫、縱坐標均為整數的點叫做格點.若函數y=f(x)的圖象恰好經過k個格點,則稱函數y=f(x)為k階格點函數.已知函數:①y=x2;②y=2sinx,③y=πx﹣1;④y=cos(x+ ).其中為一階格點函數的序號為(注:把你認為正確論斷的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知復數z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據以下條件分別求實數m的值或范圍.
(1)z是純虛數;
(2)z對應的點在復平面的第二象限.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知如圖所示的程序框圖
(1)當輸入的x為2,﹣1時,分別計算輸出的y值,并寫出輸出值y關于輸入值x的函數關系式;
(2)當輸出的結果為4時,求輸入的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=2, cos2B+5cosB﹣
=0,且點D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC, =4
,求△ABD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com