日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(本小題滿分14分)
在一個半徑為1的半球材料中截取三個高度均為h的圓柱,其軸截面如圖所示,設三個圓柱體積之和為

(1) 求f(h)的表達式,并寫出h的取值范圍是 ;
(2) 求三個圓柱體積之和V的最大值;
(1)的取值范圍是;⑵三個圓柱體積和的最大值為
本試題是以半球為背景,表示圓柱體的高度的關系式,以及體積的運用,并結合導數來求解最值問題。
(1)利用球的半徑和圓柱的高度得到關于r與半徑的關系式,從而得到高度的表示。
(2)而圓柱體的體積就是底面積乘以高,那么三個柱體的體積可以借助于第一問中的高度表示出來,再集合導數的思想求解體積的最值。
解:(1)自下而上三個圓柱的底面半徑分別為:
.      ………………………………3分
它們的高均為,所以體積和
 6分
因為,所以的取值范圍是; ………………………………………7分
⑵ 由,    ………………9分
,所以時,時,.11分
所以上為增函數,在上為減函數,
所以時,取最大值,的最大值為. ………13分
答:三個圓柱體積和的最大值為. …………………………………………14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)
已知函數
(1)當時,若函數上為單調增函數,求的取值范圍;
(2)當時,求證:函數f (x)存在唯一零點的充要條件是
(3)設,且,求證:<

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,求函數的單調區間;
(2)若函數上單調遞增,求實數的取值范圍;
(3)記函數,若的最小值是,求函數    的解析式。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題14分)已知函數,當時,有極大值
(1)求的值;(2)求函數的極小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是定義在上的可導函數,且滿足. 若,則
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數,其中,求的單調區間。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當  時,求函數  的最小值;
(2)當  時,討論函數  的單調性;
(3)是否存在實數,對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求的單調區間;
(2)當時,若方程有兩個不同的實根
(ⅰ)求實數的取值范圍;
(ⅱ)求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數y=x2㏑x的單調遞減區間為
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品视频在线免费 | 一区二区三区四区在线视频 | 黑人巨大精品欧美黑白配亚洲 | 欧美精品在线看 | 成人乱淫av日日摸夜夜爽节目 | 嫩草网站| 四虎成人在线 | 黑人巨大精品欧美一区二区一视频 | 国产精品久久久久影院色老大 | 午夜高清视频在线观看 | 免费观看一级特黄欧美大片 | 欧美日韩在线视频观看 | 日韩一区二区高清 | 成人免费观看49www在线观看 | 国产精品久久免费视频在线 | 久久视频一区 | 欧美日韩一区二区视频在线观看 | 国产精品不卡一区 | 精品国产91久久久久久久 | 成人国产精品一区 | 欧美一区二区在线播放 | 看黄色.com| 精品久久久国产 | 久久久久久毛片 | 91一区| 国产精品美女久久久 | 国产一级片在线播放 | 午夜精品一区二区三区在线 | 国产成人精品一区二区在线 | 欧美成人久久 | 毛片毛片毛片毛片毛片毛片毛片毛片 | 污视频网站在线观看免费 | 久久久久久亚洲精品 | www.日韩视频 | 成人在线视频播放 | 国产日韩欧美在线 | 成人黄色三级视频 | 一区二区视频免费 | 得得啪在线视频 | 伊人免费在线观看高清版 | 亚洲免费视频大全 |