【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
【答案】(1)詳見(jiàn)解析,(2)詳見(jiàn)解析.
【解析】試題分析:(1)本題考察的是直線和平面平行的證明,一般采用線線平行或者面面平行的方法來(lái)證明.本題中利用三角形中位線的性質(zhì),可得線線平行,證明為平行四邊形,可得
∥
,從而得到線面平行.
(2)本題證明的是面面垂直,需要先證明線面垂直,再通過(guò)面面垂直判斷定理,即可得到面面垂直.
試題解析:(1)設(shè)中點(diǎn)為
,
中點(diǎn)為
,連結(jié)
,
為
中點(diǎn),
為
中點(diǎn),
,
同理,
為矩形,
,
,
為平行四邊形,
∥
,
又∥面
(用證明當(dāng)然可以)
(2)面
⊥面
,面
面
=
,又
為矩形,
,
⊥面
,
又面
,
面
⊥面
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的對(duì)稱(chēng)軸為
,
.
(1)求函數(shù)的最小值及取得最小值時(shí)
的值;
(2)試確定的取值范圍,使
至少有一個(gè)實(shí)根;
(3)若,存在實(shí)數(shù)
,對(duì)任意
,使
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報(bào)道:當(dāng)?shù)貢r(shí)間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時(shí),輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說(shuō)明你的推理過(guò)程;
(3)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論
的單調(diào)性;
(2)若對(duì)任意的,
恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)
滿足不等式
函數(shù)
無(wú)極值點(diǎn).
(1)若“”為假命題,“
”為真命題,求實(shí)數(shù)
的取值范圍;
(2)已知“”為真命題,并記為
,且
,若
是
的必要不充分條件,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖幾何體是四棱錐,
為正三角形,
,
,
,且
.
(1)求證:平面平面
;
(2)是棱
的中點(diǎn),求證:
平面
;
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月
日至
月
日的每天晝夜溫差與實(shí)驗(yàn)室每天每
顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰
天數(shù)據(jù)的概率;
(2)若選取的是月
日與
月
日的兩組數(shù)據(jù),請(qǐng)根據(jù)
月
日與
月
日的數(shù)據(jù),求
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
是
上的點(diǎn).
(1)求證: 平面平面
;
(2)若是
的中點(diǎn),且二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線
過(guò)點(diǎn)
.
(1)求圓的圓心坐標(biāo)和半徑;
(2)若直線與圓
相切,求直線
的方程;
(3)若直線與圓
相交于P,Q兩點(diǎn),求三角形CPQ的面積的最大值,并求此時(shí)
直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com