日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設0<m<
1
2
,若
1
m
+
2
1-2m
≥k恒成立,則k的最大值為(  )
分析:由于
1
m
+
2
1-2m
≥k等價于
1
m(1-2m)
≥k
,再由0<m<
1
2
,以及基本不等式即可得到答案.
解答:解:由于0<m<
1
2
,則得到
1
2
•2m(1-2m)≤
1
2
•(
2m+(1-2m)
2
)2=
1
8

(當且僅當2m=1-2m,即m=
1
4
時,取等號)
又由
1
m
+
2
1-2m
=
1
m(1-2m)
≥k恒成立,
k≤
1
1
8
=8
,則k的最大值為8
故答案為 D
點評:本題考查基本不等式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•醴陵市模擬)設集合A={(x,y)||x|+|y|≤1},B={(x,y)|(y-x)(y+x)≤0},M=A∩B,若動點P(x,y)∈M,則x2+(y-1)2的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根,函數f(x)=
2x-k
x2+1
的定義域為[a,b].
(1)當k=0時,求函數f(x)的值域;
(2)證明:函數f(x)在其定義域[a,b]上是增函數;
(3)在(1)的條件下,設函數g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
 0<m<
1
2
)
,若對任意的x1∈[-
1
2
1
2
]
,總存在x2∈[-
1
2
1
2
]
,使得f(x2)=g(x1)成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設函數f(x)=
m
n
+
1
2

(1)若x∈[0,
π
2
],f(x)=
3
3
,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{xn}的各項為不等于1的正數,數列{yn}滿足ynlogxna=2(a>0,a≠1),設y3=18,y6=12.
(1)求數列{yn}的前多少項和最大,最大值為多少?
(2)試判斷是否存在自然數M,使當n>M時,xn>1恒成立?若存在,求出相應的M,若不存在,請說明理由;
(3)令an=logxnxn+1(n>13,n∈N),試判斷數列{an}的增減性?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=|x2-1|,g(x)=k|x-1|.
(Ⅰ)已知0<m<n,若f(m)=f(n),求m2+n2的值;
(Ⅱ)設F(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,當k=
1
2
時,求F(x)在(-∞,0)上的最小值;
(Ⅲ)求函數G(x)=f(x)+g(x)在區間[-2,2]上的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品久久视频 | 精品一区二区三区免费看 | www久久| www.国产.com| 四虎影院在线播放 | 四虎激情 | 91色视频| 蜜臀久久99精品久久久久宅男 | 久久精品综合 | 精品国产乱码久久久久久影片 | 精品国产一二三区 | 日日日操 | 国产视频一区二区在线播放 | 亚洲亚洲人成综合网络 | 国产福利视频在线观看 | 99国产精品99久久久久久粉嫩 | 色综合视频在线观看 | 亚洲在线一区二区 | 在线视频日韩 | 中文字幕免费观看 | 91午夜精品亚洲一区二区三区 | 91av免费在线观看 | 亚洲欧美精品一区二区 | 欧美日韩一区在线观看 | 国产精品久久久久久久久久久久久 | 黄网站免费大全入口 | 国产午夜精品久久 | 国产黄色小说 | 国产精品免费一区二区三区 | 亚洲精品中文字幕乱码三区91 | 亚洲国产福利 | 久久久久久久久久久国产 | 成人国产| 中文字幕在线视频播放 | 国产视频一区在线播放 | 91精品久久久久久粉嫩 | 久久亚洲精品视频 | 欧美a级成人淫片免费看 | 亚洲一区在线视频 | 黄色一级片免费 | 秋霞一区二区 |