(本小題共14分)
已知橢圓C:,左焦點
,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點
(
不是左、右頂點),且以
為直徑的圓經過橢圓C的右頂點A. 求證:直線
過定點,并求出定點的坐標.
(1) (2) 直線
過定點,且定點的坐標為
【解析】
試題分析:解:(Ⅰ)由題意可知:
……1分
解得 ………2分
所以橢圓的方程為:
……3分
(II)證明:由方程組
…4分
整理得
………..5分
設
則
…….6分
由已知,且橢圓的右頂點為
………7分
……… 8分
即
也即
…… 10分
整理得:
……11分
解得均滿足
……12分
當時,直線的
方程為
,過定點(2,0)與題意矛盾舍去……13分
當時,直線的
方程為
,過定點
故直線過定點,且定點的坐標為
…….14分
考點:直線與橢圓的位置關系
點評:解決的關鍵是熟練的根據橢圓的性質來得到橢圓的方程,同時能結合聯立方程組的思想來,韋達定理和垂直關系,得到直線方程,進而求解。屬于基礎題。
科目:高中數學 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,
,點E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為
,右準線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設直線是圓
上動點
處的切線,
與雙曲線
交
于不同的兩點,證明
的大小為定值.
查看答案和解析>>
科目:高中數學 來源:2013屆度廣東省高二上學期11月月考理科數學試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD底面ABCD,PD=DC,點E是PC的中點,作EF
PB交PB于點F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數學 來源:2010年北京市崇文區高三下學期二模數學(文)試題 題型:解答題
(本小題共14分)
正方體的棱長為
,
是
與
的交點,
為
的中點.
(Ⅰ)求證:直線∥平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com