【題目】動點在橢圓
上,過點
作
軸的垂線,垂足為
,點
滿足
,已知點
的軌跡是過點
的圓.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
,
兩點(
,
在
軸的同側),
,
為橢圓的左、右焦點,若
,求四邊形
面積的最大值.
科目:高中數學 來源: 題型:
【題目】已知正四棱錐的底面邊長為
高為
其內切球與面
切于點
,球面上與
距離最近的點記為
,若平面
過點
,
且與
平行,則平面
截該正四棱錐所得截面的面積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐ABCD中,
和
都是等邊三角形,平面PAD
平面ABCD,且
,
.
(1)求證:CDPA;
(2)E,F分別是棱PA,AD上的點,當平面BEF//平面PCD時,求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的左頂點為
,右焦點為
,
,
為橢圓
上兩點,圓
.
(1)若軸,且滿足直線
與圓
相切,求圓
的方程;
(2)若圓的半徑為2,點
,
滿足
,求直線
被圓
截得弦長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動點在橢圓
上,過點
作
軸的垂線,垂足為
,點
滿足
,已知點
的軌跡是過點
的圓.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
,
兩點(
,
在
軸的同側),
,
為橢圓的左、右焦點,若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,底面ABC,
,
,
,D,E分別為棱BC,PC的中點,點F在棱PA上,設
.
(1)當時,求異面直線DF與BE所成角的余弦值;
(2)試確定t的值,使二面角C-EF-D的平面角的余弦值為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下列兩個命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內,并且都不在平面β內,直線l,m中至少有一條與平面β相交.則甲是乙的( )
A.充分且必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com