日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在直角梯形P1DCB中,P1D∥CB,CD∥P1D且P1D=6,BC=3,DC=
6
,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)求平面PEC和平面PAD所成的銳二面角的大小;
(3)求點D到平面PEC的距離.
分析:(1)取PC中點M,連接FM、EM,由F、M分別為PD、PC中點,知FM=
1
2
CD,由E為AB中點,知AE=
1
2
CD,所以FM=AE,F(xiàn)MEA為平行四邊形,由此能夠證明AF∥平面PEC.
(2)延長DA,CE交于點N,連接PN,由AB⊥PA,AB⊥AD,知AB⊥平面PAD,由AB∥DC,知DC⊥平面PAD,所以∠PDA為二面角P-CD-B的平面角.由此入手能夠求出平面PEC和平面PAD所成二面角.
(3)連接ED,由PA⊥平面ABCD,知VP-CED=
1
3
S△CED•PA=
3
2
6
,VP-CED=VD-PCE=
3
2
6
.由此能求出點D到平面PEC的距離.
解答:(1)證明:取PC中點M,連接FM、EM,
∵F、M分別為PD、PC中點,
∴FM=
1
2
CD,
∵E為AB中點,∴AE=
1
2
CD,
∴FM=AE,∴FMEA為平行四邊形,
∴AF∥EM,
∵AF?平面PEC,EM?平面PEC,
∴AF∥平面PEC.
(2)解:延長DA,CE交于點N,連接PN,
∵AB⊥PA,AB⊥AD,
∴AB⊥平面PAD∵AB∥DC,…6分
∴DC⊥平面PAD,
∴DC⊥PD,DC⊥AD,
∴∠PDA為二面角P-CD-B的平面角
∴∠PDA=45°,
∵PA=AD=3∠PDA=45°,
∵PD=3
2
,∴PA⊥AD,
又  PA⊥AB,∴PA⊥平面ABCD,
∵AE∥CD,且E為AB中點,
∴AE=
1
2
CD,∴AE為△NDC的中位線,
∴AN=AD=PA,∴△PND為直角三角形,
又NE=EC=
42
2
,PE=
42
2

∴△PNC為直角三角形,
∴PC⊥PN,PD⊥PN,
∴∠CPD為平面PEC和平面PAD所成二面角的平面角,
又PD=3
2
,CD=
6
,PD⊥DC,
∴tan∠CPD=
CD
PD
=
6
3
2
=
3
3

∴∠CPD=30°,
∴平面PEC和平面PAD所成二面角為30°.
(3)解:連接ED,
∵PA⊥平面ABCD,
∴VP-CED=
1
3
S△CED•PA=
1
3
×
1
2
×
6
×3×3
=
3
2
6

VP-CED=VD-PCE=
3
2
6

設(shè)點D到平面PCE的距離為d.
S△PCE=3
3

VP-PCE=
1
3
S△DCE•d=
3
2
6

∴d=
3
2
2

點D到平面PEC的距離為
3
2
2
點評:本題考查證明AF∥平面PEC,求平面PEC和平面PAD所成的銳二面角的大小,求點D到平面PEC的距離.考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年東北師大附中三摸理) (12分)如圖,在直角梯形P1DCB中,P1DCBCDP1DP1D=6,BC=3,DCAP1D的中點,E是線段AB的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角PCDB成45°角.

   (Ⅰ)求證:PA⊥平面ABCD

   (Ⅱ)求平面PEC和平面PAD所成的銳二面角的大小.

                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形P1DCB中,P1D∥CB,CDP1D,且P1D=6,BC=3,DC=6,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角.設(shè)EF分別是線段ABPD的中點.

(1)求證:AF∥平面PEC;

(2)求PC與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形P1DCB中,P1D//CB,CD//P1D且P1D = 6,BC = 3,DC =,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點.

   (1)求證:AF//平面PEC;

   (2)求平面PEC和平面PAD所成的二面角的大小;

   (3)求點D到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角梯形P1DCB中,P1D∥CB,CD∥P1D且P1D=6,BC=3,DC=數(shù)學(xué)公式,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)求平面PEC和平面PAD所成的銳二面角的大小;
(3)求點D到平面PEC的距離.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 天堂精品一区二区三区 | 亚洲免费人成在线视频观看 | 欧美大片在线免费观看 | 四虎精品成人免费网站 | 欧美一级艳片视频免费观看 | 日韩视频在线观看不卡 | 天天操综 | 欧美视频一区二区在线 | 久久女人| 一区二区三区在线播放 | 成人av高清 | 亚洲一区二区三区在线播放 | 一区二区三区在线 | 欧 | 精品91在线视频 | 国产精选一区二区三区 | 激情久久久 | 国产精品视频一区二区免费不卡 | 午夜影晥 | 国产精品久久久久影院 | av成人在线观看 | 91精品一区二区三区久久久久久 | 久草久草久 | 噜噜噜噜狠狠狠7777视频 | 欧美日韩视频在线 | 日韩欧美~中文字幕 | 在线观看亚洲免费 | 黄色片免费看 | 在线观看av免费 | 伊人网站 | 一区二区国产精品 | 成人精品 | 国产成人宗合 | 老司机深夜福利在线观看 | 国产色在线观看 | 一级在线毛片 | 成人影院网站ww555久久精品 | 久久天堂 | 久久久久久久久一区二区 | 国产精品一区二区久久久久 | 久久a v视频 | 91在线电影 |