【題目】已知,
,直線
,
相交于點(diǎn)
,且它們的斜率之積是
.
(1)求點(diǎn)的軌跡
的方程;
(2)過(guò)點(diǎn)的直線與軌跡
交于點(diǎn)
,與
交于點(diǎn)
,過(guò)
作
的垂直線交
軸于點(diǎn)
,求證:
.
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1) 直接法求軌跡方程,利用 化簡(jiǎn)可得.
(2) 設(shè)直線的方程為
與橢圓方程聯(lián)解,求出
、
點(diǎn)坐標(biāo),再利用垂直關(guān)系求出
點(diǎn)坐標(biāo),計(jì)算得
可證.
(1)設(shè),則直線
的斜率
.直線
的斜率
,
依題意得,整理得
,
所以點(diǎn)的軌跡
的方程為
.
(2)解法1:設(shè)直線的方程為
,
聯(lián)立,消去
整理得
,
又,所以
,即
,
,
易得,直線
的斜率
,
又,所以直線
的方程為
,
令得
,所以直線
的斜率
,
又直線的斜率為
,所以
,所以
.
解法2:設(shè)(其中
),則直線
,
令得
,
所以直線的斜率
.
又,所以直線
的方程為
,
所以直線的斜率
,直線
的斜率
,
又,即
,所以
.
解法3:設(shè)直線,則直線
的斜率
,
,直線
的斜率
,
又,所以直線
的方程為
.
令得
,
所以直線的斜率
,所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,某小區(qū)超市平面圖如圖所示,由矩形與扇形
組成,
米,
米,
,經(jīng)營(yíng)者決定在
點(diǎn)處安裝一個(gè)監(jiān)控?cái)z像頭,攝像頭的監(jiān)控視角
,攝像頭監(jiān)控區(qū)域?yàn)閳D中陰影部分,要求點(diǎn)
在弧
上,點(diǎn)
在線段
上.設(shè)
.
(1)求該監(jiān)控?cái)z像頭所能監(jiān)控到的區(qū)域面積關(guān)于
的函數(shù)關(guān)系式,并求出
的取值范圍;
(2)求監(jiān)控區(qū)域面積最大時(shí),角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個(gè)棋子(如圖所示),甲從中記下某個(gè)棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對(duì)話如下:“乙先說(shuō)我無(wú)法確定.丙接著說(shuō)我也無(wú)法確定.最后丁說(shuō)我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2017年7月27日上映以來(lái),《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語(yǔ)電影票房紀(jì)錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績(jī)成功殺入前五.通過(guò)收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯(cuò)誤的是( )
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過(guò)2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達(dá)到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,
,
底面
,點(diǎn)
分別為
,
的中點(diǎn).
(1)求證:平面平面
;
(2)在線段上是否存在點(diǎn)
,使得直線
與平面
所成的角的正弦值為
?若存在,確定點(diǎn)
的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a是實(shí)數(shù),關(guān)于z的方程(z2-2z+5)(z2+2az+1)=0有4個(gè)互不相等的根,它們?cè)趶?fù)平面上對(duì)應(yīng)的4個(gè)點(diǎn)共圓,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為
,直線
與橢圓
相交于
兩點(diǎn);當(dāng)直線
經(jīng)過(guò)橢圓
的下頂點(diǎn)
和右焦點(diǎn)
時(shí),
的周長(zhǎng)為
,且
與橢圓
的另一個(gè)交點(diǎn)的橫坐標(biāo)為
(1)求橢圓的方程;
(2)點(diǎn)為
內(nèi)一點(diǎn),
為坐標(biāo)原點(diǎn),滿足
,若點(diǎn)
恰好在圓
上,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,圓心為坐標(biāo)原點(diǎn)的單位圓O在C的內(nèi)部,且與C有且僅有兩個(gè)公共點(diǎn),直線
與C只有一個(gè)公共點(diǎn).
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)不垂直于坐標(biāo)軸的動(dòng)直線l過(guò)橢圓C的左焦點(diǎn)F,直線l與C交于A,B兩點(diǎn),且弦AB的中垂線交x軸于點(diǎn)P,試求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com