日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知{an}是公差為d的等差數列,{bn}是公比為q的等比數列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?請說明理由;
(2)若bn=aqn(a、q為常數,且aq≠0)對任意m存在k,有bm•bm+1=bk,試求a、q滿足的充要條件;
(3)若an=2n+1,bn=3n試確定所有的p,使數列{bn}中存在某個連續p項的和式數列中{an}的一項,請證明.
【答案】分析:(1)把an的通項公式代入am+am+1=ak,整理可得k和m的關系式,結果為分數,根據m、k∈N,可知k-2m也應該為整數,進而可判定不存在n、k∈N*,使等式成立.
(2)利用特殊值法,令m=1,則可知b1•b2=bk,把等比數列的通項公式代入整理可得a=qc,其中c是大于等于-2的整數;反之a=qc時,其中c是大于等于-2的整數,則bn=qn+c,代入bm•bm+1中整理得bm•bm+1=bk,進而可判斷a、q滿足的充要條件是a=qc,其中c是大于等于-2的整數
(3)設bm+1+bm+2+…+bm+p=ak,先看當p為偶數時等式左邊為偶數,右邊為奇數,等式不可能成立;再看當p=1時,等式成立,當p≥3且為奇數時,根據bm+1+bm+2+…+bm+p=ak,整理可得3m+1(3p-1)=4k+2,進而可知3m+1[2(Cp2+Cp2•22++Cpp•2p-2)+p]=2k+1,此時,一定有m和k使上式一定成立.綜合可知當p為奇數時,命題都成立.
解答:解:(1)由am+am+1=ak,得6m+6+3k+1,
整理后,可得,∵m、k∈N,
∴k-2m為整數∴不存在n、k∈N*,使等式成立.
(2)當m=1時,則b1•b2=bk,
∴a2•q3=aqk∴a=qk-3,即a=qc,其中c是大于等于-2的整數
反之當a=qc時,其中c是大于等于-2的整數,則bn=qn+c
顯然bm•bm+1=qm+c•qm+1+c=q2m+1+2c=bk,其中k=2m+1+c
∴a、q滿足的充要條件是a=qc,其中c是大于等于-2的整數
(3)設bm+1+bm+2+…+bm+p=ak
當p為偶數時,(*)式左邊為偶數,右邊為奇數,
當p為偶數時,(*)式不成立.
由(*)式得
整理得3m+1(3p-1)=4k+2
當p=1時,符合題意.
當p≥3,p為奇數時,3p-1=(1+2)p-1
=Cp+Cp1•21+Cp2•22++Cpp•2p-1
=Cp1•21+Cp2•22++Cpp•2p
=2(Cp1+Cp2•2++Cpp•2p-1
=2[2(Cp2+Cp2•22++Cpp•2p-2)+p]
∴由3m+1(3p-1)=4k+2,得3m+1[2(Cp2+Cp2•22++Cpp•2p-2)+p]=2k+1
∴當p為奇數時,此時,一定有m和k使上式一定成立.
∴當p為奇數時,命題都成立.
點評:本題主要考查了等比數列和等差數列的性質.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知{an}是公差為d的等差數列,{bn}是公比為q的等比數列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?請說明理由;
(2)若bn=aqn(a、q為常數,且aq≠0)對任意m存在k,有bm•bm+1=bk,試求a、q滿足的充要條件;
(3)若an=2n+1,bn=3n試確定所有的p,使數列{bn}中存在某個連續p項的和式數列中{an}的一項,請證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是公差為d的等差數列,{bn}是公比為q的等比數列.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?說明理由;
(2)找出所有數列{an}和{bn},使對一切n∈N*,
an+1an
=bn
,并說明理由;
(3)若a1=5,d=4,b1=q=3,試確定所有的p,使數列{an}中存在某個連續p項的和是數列{bn}中的一項,請證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

8、已知{an}是公差為-2的等差數列,a1=12,是|a1|+|a2|+|a3|+…+|a20|=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是公差為d的等差數列,它的前n項和為Sn,等比數列{bn}的前n項和為Tn,S4=2S2+4,b2=
1
9
,T2=
4
9

(1)求公差d的值;
(2)若對任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍;
(3)若a1=
1
2
,判別方程Sn+Tn=2010是否有解?說明理由.國.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是公差為d的等差數列,它的前n項和為Sn.等比數列{bn}的前n項和為Tn,且S4=2S2+4,b2=
1
9
T2=
4
9

(Ⅰ)求公差d的值;
(Ⅱ)若對任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍;
(Ⅲ)若a1=
1
2
,判別方程Sn+Tn=55是否有解?并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产对白videos麻豆高潮 | 丁香六月激情 | 欧美日韩免费 | 午夜视频免费在线观看 | 欧美在线激情 | 国产欧美日韩在线视频 | 日韩综合久久 | 欧美成年人视频 | 欧美在线视频播放 | 长河落日电视连续剧免费观看 | 91美女片黄在线观看91美女 | 福利片在线 | 97在线播放 | 91av视频在线播放 | 国产日韩精品一区二区 | 午夜性视频 | 欧美1级片 | 日韩黄色在线视频 | 一区二区在线视频 | 欧美在线激情 | 色婷婷导航 | 视频一二三区 | 欧美在线视频观看 | 九月色婷婷 | 无遮挡一级毛片 | 亚洲第一伊人 | 国产精品久久久久久久成人午夜 | 日韩欧美一区在线 | 久久久久久一区 | 欧美黄色片 | 亚洲精品91天天久久人人 | 精品久久一区二区三区 | 色六月婷婷 | 亚洲高清毛片一区二区 | 国产福利视频在线 | 国产精品国产三级国产 | 欧美日韩成人在线 | 日韩成人精品 | 三级av在线 | 欧美毛片基地 | 日韩视频在线免费观看 |