【題目】已知函數f(x)是定義域為R上的奇函數,當x>0時,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求實數t的取值范圍.
【答案】(1)f(x)=;(2)(
,+∞).
【解析】
試題(1)運用奇函數的定義,可得x<0的解析式,進而得到f(x)的解析式;
(2)求出f(x)在R上遞增.不等式f(t﹣2)+f(2t+1)>0即為f(1+2t)>﹣f(t﹣2)=f(2﹣t),即有1+2t>2﹣t,解不等式即可得到所求范圍.
解:(1)∵函數f(x)是定義域為R上的奇函數,
∴f(x)=﹣f(﹣x)
又∵當x>0時,f(x)=x2+2x.
若x>0,則﹣x<0.f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x
∴f(x)=﹣f(﹣x)=2x﹣x2.
∴f(x)=;
(2)當x>0時,f(x)=x2+2x=(x+1)2﹣1,
區間(0,+∞)在對稱軸x=﹣1的右邊,為增區間,
由奇函數的性質,可得f(x)在R上遞增.
不等式f(t﹣2)+f(2t+1)>0即為
f(1+2t)>﹣f(t﹣2)=f(2﹣t),
即有1+2t>2﹣t,解得t>
則t的取值范圍是(,+∞).
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
是邊長為2的菱形,
,四邊形
是矩形,
和
分別是
和
的中點.
(1)求證:平面平面
;
(2)若平面平面
,
,求平面
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒市委、市政府在上饒召開上饒市全面展開新能源工程動員大會,會議動員各方力量,迅速全面展開新能源工程工作.某企業響應號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
(1)完成列聯表,并判斷是否有
的把握認為該企業生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)根據市場調查,設備改造后,每生產一件合格品企業可獲利200元,一件不合格品虧損150元,用頻率估計概率,則生產1000件產品企業大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司擬設計一個扇環形狀的花壇(如圖所示),該扇環是由以點為圓心的兩個同心圓弧和延長后通過點
,
的兩條線段圍成.設圓弧
和圓弧
所在圓的半徑分別為
米,圓心角為θ(弧度).
(1)若,
,求花壇的面積;
(2)設計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 (n∈N*)的展開式中第五項的系數的與第三項的系數的比是10∶1.
(1)求展開式中各項系數的和;
(2)求展開式中含的項;
(3)求展開式中系數最大的項和二項式系數最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,且
,
,
三點中恰有兩點在拋物線
上,另一點是拋物線
的焦點.
(1)求證:、
、
三點共線;
(2)若直線過拋物線
的焦點且與拋物線
交于
、
兩點,點
到
軸的距離為
,點
到
軸的距離為
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com