日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知定義在R上的函數f(x)同時滿足:
f(0)=f(
π
4
)=1
;②f(m+n)+f(m-n)=2f(m)cos2n+8sin2n(m,n∈R).
則(1)f(
π
2
+x)+f(x)
=
4
4

(2)函數f(x)的最大值是
2+
2
2+
2
分析:(1)將
π
2
+x變形為(
π
4
+x)+
π
4
,x變形為(
π
4
+x)-
π
4
,根據題意代入②中,利用特殊角的三角函數值化簡即可求出值;
(2)令m=
π
4
,n=
π
4
+x,根據題意代入②中,利用特殊角的三角函數值化簡,表示出f(
π
2
+x)+f(-x),記作(i),令m=0,n=x,根據題意代入②中,利用特殊角的三角函數值化簡,表示出f(
π
2
+x)-f(-x),記作(ii),(ii)-(i)表示出f(x)-f(-x),記作③,令m=0,n=x,根據題意代入②中,利用特殊角的三角函數值化簡,表示出f(x)+f(-x),記作④,(③+④)÷2得到f(x)的解析式,利用兩角和與差的正弦函數公式化為一個角的正弦函數,根據正弦函數的值域即可求出函數的最大值.
解答:解:(1)由題意得:f(
π
2
+x)+f(x)=f[(
π
4
+x)+
π
4
]+f[(
π
4
+x)-
π
4
]=2f(
π
4
+x)cos
π
2
+8sin2
π
4
=8×(
2
2
2=4;
(2)令m=
π
4
,n=
π
4
+x,
根據題意得:f(
π
4
+
π
4
+x)+f(
π
4
-
π
4
-x)=f(
π
2
+x)+f(-x)
=2f(
π
4
)cos(
π
2
+2x)+8sin2
π
4
+x)=4-2sin2x(i),
又由(1)得f(
π
2
+x)+f(x)=4(ii),
∴(ii)-(i)得:f(x)-f(-x)=4-(4-2sin2x)=2sin2x③,
令m=0,n=x,
根據題意得:f(0+x)+f(0-x)=f(x)+f(-x)=2cos2x+8sin2x=2cos2x+8×
1-cos2x
2
=4-2cos2x④,
(③+④)÷2得:f(x)=2-(sin2x+cos2x)=2-
2
sin(2x+
π
4
),
∵sin(2x+
π
4
)∈[-1,1],
∴f(x)的最大值為2+
2

故答案為:(1)4;(2)2+
2
點評:此題考查了函數解析式的求解及常用的方法,函數的值,二倍角的余弦函數公式,兩角和與差的正弦函數公式,以及正弦函數的定義域與值域,弄清題意中的①和②是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的函數y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數,
則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)是偶函數,對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产精品99久久久久久久久 | 中文字幕一区二区三区四区五区 | 伊人99 | 亚洲 成人 av| 亚洲精品视频在线看 | 黄色电影天堂 | www.五月天婷婷 | 毛片久久久 | 久久免费精品视频 | 黄色av免费看 | 狠狠综合久久av一区二区老牛 | 操操网站 | 国产精品视频久久 | 日韩精品免费视频 | 爱爱爱av | 欧美成人一区二区三区片免费 | 久久这里有精品视频 | 中文字幕第一页久久 | 九九九九九九精品任你躁 | 玖玖精品 | 亚洲 欧美 精品 | 黄色国产一级视频 | 午夜欧美 | 欧洲亚洲精品久久久久 | 国产欧美精品一区二区色综合 | 日韩一区二区在线观看视频 | 91久久精品国产91久久 | 亚洲一区二区三区 | 午夜精品一区二区三区在线视频 | 亚洲久草| 狠狠爱www人成狠狠爱综合网 | 日韩一区二区在线视频 | 精品99在线 | 九九热精品在线观看 | 四虎首页| 久久69| 欧美日韩一区二区三区在线观看 | 999久久久国产精品 heyzo在线观看 | 超碰中文字幕 | 午夜视频一区二区 | 天天宗合网 |