日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)在(-∞,0)∪(0,+∞)上有定義,且在(0,+∞)上是增函數,f(1)=0,又g(θ)=sin2θmcosθ-2m,θ∈[0,],設M={m|g(θ)<0,m∈R},N={m|fg(θ)]<0},求MN.
MN={m|m>4-2}
f(x)是奇函數,且在(0,+∞)上是增函數,
f(x)在(-∞,0)上也是增函數.
f(1)=0,∴f(-1)=-f(1)=0,從而,當f(x)<0時,有x<-1或0<x<1,
則集合N={m|fg(θ)]<θ={m|g(θ)<-1或0<g(θ)<1,
MN={m|g(θ)<-1.
g(θ)<-1,得cos2θ>m(cosθ-2)+2,θ∈[0,],
x=cosθ,x∈[0,1]得 x2>m(x-2)+2,x∈[0,1],
令①: y1=x2,x∈[0,1]及②y2=m(m-2)+2,
顯然①為拋物線一段,②是過(2,2)點的直線系,
在同一坐標系內由x∈[0,1]得y1>y2.
m>4-2,故MN={m|m>4-2}.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數是在上每一點均可導的函數,若 在時恒成立.
(1)求證:函數上是增函數;
(2)求證:當時,有
(3)請將(2)問推廣到一般情況,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

函數對一切實數均有成立,
.
(1) 求的值;
(2)求解析式;
(3)當恒成立時,求的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

 如果函數f(x)在R上為奇函數,在(-1,0)上是增函數,且f(x+2)=-f(x),試比較f(),f(),f(1)的大小關系_________. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=loga(x-3a)(a>0且a≠1),當點P(x,y)是函數y=f(x)圖像上的點時,點Q(x-2a,-y)是函數y=g(x)圖像上的點.
(1)寫出函數y=g(x)的解析式;
(2)若當x∈[a+2,a+3]時,恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)已知函數(I)當a=1時,求的最小值;(II)若恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

集合A={3,4},B={5,6,7},那么可建立從AB的映射個數是__________,從BA的映射個數是__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

、函數f(x)對任意的a,bR都有f(a+b)=,且f(1)=2,則__________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,則的值為
A.1 B.2 C.-1D.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产三区在线观看 | 日韩视频在线一区 | 黄色片在线播放 | 娇妻被朋友调教成玩物 | 天天综合永久入口 | 99久久久国产精品 | 亚洲一区二区三区免费视频 | 欧美一区二区三区视频 | 国产精品日韩欧美一区二区 | wwwxxx日本| 黄色av网| 精品亚洲一区二区三区四区五区 | 国产精品11| 日韩中文字幕在线观看 | 免费视频一区 | 国产精品久久久久久久久久久久冷 | 国产乱码精品一品二品 | 激情久久久久 | 久久人爽 | 久久精品国产免费看久久精品 | 亚洲午夜精品视频 | 在线色网站 | 国产三区在线观看视频 | 二区在线观看 | 久久久久久一区 | 91精品一二区 | 婷婷精品 | 日韩福利一区 | 色先锋资源 | 精品一区二区三区四区 | 亚洲蜜桃精久久久久久久 | 亚洲激情视频 | 国产精品99久久久久久动医院 | 中文字幕免费在线 | 国产精品91av| 国产婷婷色一区二区三区 | 精品日韩av| 国产传媒一区 | 99精品欧美一区二区蜜桃免费 | 五月激情综合网 | 欧美在线观看视频 |