【題目】已知A(-,0),B(0,-
),其中k≠0且k≠±1,直線l經過點P(1,0)和AB的中點.
(1)求證:A,B關于直線l對稱.
(2)當1<k<時,求直線l在y軸上的截距b的取值范圍.
【答案】(1)證明見解析;(2)(-1,-)
【解析】試題分析:(1)由題意只需證明和
垂直即可,有斜率公式可得
和
的斜率,得到
,即可作出證明;
(2)可得直線在
軸上的截距
,由
和函數的單調性,即可得到
的取值范圍.
試題解析:
(1)因為直線l經過AB的中點,
所以只需再證AB⊥l即可.
因為A-,0,B0,-
,
所以AB的中點為-,-
.
kAB==-k,kl=
=
,
所以kAB·kl=(-k)·=-1,
所以AB⊥l,
所以A,B關于直線l對稱.
(2)kl=,所以直線l方程為y=
(x-1),其在y軸的截距b=-
,
因為y=-在(0,+∞)上是單調增函數,
所以1<k<時,
-1<-<-
即-1<b<-
.
所以直線l在y軸上的截距b的取值范圍是(-1,-)
科目:高中數學 來源: 題型:
【題目】下列各對直線不互相垂直的是 ( )
A. l1的傾斜角為120°,l2過點P(1,0),Q(4, )
B. l1的斜率為-,l2過點P(1,1),Q
C. l1的傾斜角為30°,l2過點P(3, ),Q(4,2
)
D. l1過點M(1,0),N(4,-5),l2過點P(-6,0),Q(-1,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2﹣alnx(a∈R)
(1)若函數f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果函數y=f(x)在定義域內給定區間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數,0就是它的均值點.若函數f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數”,則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB
(2)求AB與平面SBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
)
(1)若在區間[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)條件下,若在區間上,不等式f(x)
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=ax2-2ax+1+b(a>0)在區間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。
(1)求實數a,b的值;
(2)若不等式f(2k)>1成立,求實數k的取值范圍;
(3)定義在[p,q]上的函數(x),設p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區間[p,q]任意劃分成n個小區間,如果存在一個常數M>0,使得和式
恒成立,則稱函數
(x)為在[p,q]上的有界變差函數。試判斷函數f(x)是否為在[0,4]上的有界變差函數?若是,求M的最小值;若不是,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如表
表示一個多位數時,像阿拉伯計數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,個位,百位,萬位數用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則9117用算籌可表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABCA1B1C1中,AB=2,AA1=3,
D為C1B的中點,P為AB邊上的動點.
(1)當點P為AB的中點時,證明DP∥平面ACC1A1;
(2)若AP=3PB,求三棱錐BCDP的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com