【題目】對于函數,若存在實數對
,使得等式
對定義域中的任意
都成立,則稱函數
是“
型函數”.
(1)若函數是“
型函數”,且
,求出滿足條件的實數對
;
(2)已知函數.函數
是“
型函數”,對應的實數對
為
,當
時,
.若對任意
時,都存在
,使得
,試求
的取值范圍.
【答案】(1); (2)
.
【解析】
(1)利用定義,直接判斷求解即可.
(2)由題意得,g(1+x)g(1﹣x)=4,所以當時,
,其中
, 所以只需使當
時,
恒成立即可,即
在
上恒成立,若
,顯然不等式在
上成立,若
,分離參數m,分別求得不等式右邊的函數的最值,取交集即可得到m的范圍.
(1)由題意,若是“(a,b)型函數”,則
,即
,
代入得
,所求實數對為
.
(2)由題意得:的值域是
值域的子集,易知
在
的值域為
,
只需使當時,
恒成立即可,
,即
,
而當時,
, 故由題意可得,要使當
時,都有
,
只需使當時,
恒成立即可,
即在
上恒成立,
若,顯然不等式在
上成立,
若,則可將不等式轉化為
,
因此只需上述不等式組在上恒成立,顯然,當
時,不等式(1)成立,
令
在
上單調遞增,∴
,
故要使不等式(2)恒成立,只需即可,綜上所述,所求
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】隨著手機的普及,大學生迷戀手機的現象非常嚴重.為了調查雙休日大學生使用手機的時間,某機構采用不記名方式隨機調查了使用手機時間不超過小時的
名大學生,將
人使用手機的時間分成
組:
,
,
,
,
分別加以統計,得到下表,根據數據完成下列問題:
使用時間/時 | |||||
大學生/人 |
(1)完成頻率分布直方圖;
(2)根據頻率分布直方圖估計大學生使用手機的平均時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場對顧客實行購物優惠活動,規定 :一次購物總額
1)如果不超過500元,那么不予優惠;
2)如果超過500元但不超過1000元,那么超過500元部分按標價給予8折優惠;
3)如果超過1000元,那么其中超過500不超過1000元給予8折優惠,超過1000元部分給予5折優惠.設一次購物標價總額為x元,優惠后實際付款額為f(x)元.
(1)試寫出f(x)的解析式;
(2)如果某顧客實際付款額為1600元,在這次優惠活動中他實際付款額比購物標價總額少支出多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點是拋物線
上一定點,直線
的傾斜角互補,且與拋物線另交于
,
兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com