(本小題滿分12分) 已知橢圓的離心率
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切。(I)求a與b;(II)設橢圓的左,右焦點分別是F1和F2,直線
且與x軸垂直,動直線
軸垂直,
于點P,求線段PF1的垂直平分線與
的交點M的軌跡方程,并指明曲線類型。
(Ⅰ) (Ⅱ)
(I)由橢圓
得: (1)
又以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
即原點到直線的距離為b,所以
代入到(1)中得
所以, …………6分
(II)方法一:由得F1,F2點的坐標分別為(-1,0),(1,0),
設M點的坐標為(x,y),由題意:P點坐標為(1,y),因為線段PF1的垂直平分線與的交點為M,所以
故線段PF1的垂直平分線與的交點M的軌跡方程是
,
該軌跡是以F1為焦點,為準線的拋物線。……13分
方法二:因為點M是線段PF1的垂直平分線與的交點,故M到點F1的距離與到P點距離即到
的距離相等,故M點軌跡是以F1(-1,0)為焦點,
為準線的拋物線,故其方程為
所以,線段PF1的垂直平分線與的交點M的軌跡方程是
,該軌跡是以F1為焦點,
為準線的拋物線。
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com