【題目】設函數
(1)求函數的單調增區間;
(2)當時,記
,是否存在整數
,使得關于
的不等式
有解?若存在,請求出
的最小值;若不存在,請說明理由.
【答案】(1)見解析(2)見解析
【解析】試題分析:
(1) ,討論可得函數的單調性;
(2) ,判斷函數的單調性并求出最值,則易得結論.
試題解析:
(1
當時,由
,解得
;
當時,由
,解得
;
當時,由
,解得
;
當時,由
,解得
;
綜上所述,當時,
的單調遞增區間為
;
當時,
的單調遞增區間為
;
當時,
的單調遞增區間為
;
(2)方法一:當時,
,
在
單調遞增,
,
所以存在唯一實數,使得
,即
,
=
記函數,則
,
在
上單調遞增,
所以,即
.
,且
為整數,得
,
所以存在整數滿足題意,且
的最小值為0.
方法二:當時,
,
由得,當
時,不等式
有解,
下面證明:當時,不等式
恒成立,
即證恒成立.
顯然,當時,不等式恒成立.
只需證明當時,
恒成立.
即證明,令
,
,由
,得
.
當;當
;
=
,
當時;
恒成立.
綜上所述,存在整數滿足題意,且
的最小值為0.
科目:高中數學 來源: 題型:
【題目】(2016·武昌調研)如圖,在圓內畫1條線段,將圓分成2部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.則
(1)在圓內畫5條線段,將圓最多分割成________部分;
(2)在圓內畫n條線段,將圓最多分割成________部分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點,N為PC上一點,且PC=3PN.
(1)求證:MN∥平面PAB;
(2)求點M到平面PAN的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點和短軸的兩個頂點構成的四邊形是一個正方形,且其周長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點的直線
與橢圓
相交于
兩點,點
關于原點的對稱點為
,若點
總在以線段
為直徑的圓內,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: ,其焦點為F1,F2,離心率為
,直線l:x+2y-2=0與x軸,y軸分別交于點A,B,
(1)若點A是橢圓E的一個頂點,求橢圓的方程;
(2)若線段AB上存在點P滿足|PF1|+|PF2|=2a,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的左、右焦點為F1,F2,設點F1,F2與橢圓短軸的一個端點構成斜邊長為4的直角三角形.
(1)求橢圓C的標準方程;
(2)設A,B,P為橢圓C上三點,滿足,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com