【題目】小明每天上學(xué)都需要經(jīng)過一個有交通信號燈的十字路口.已知十字路口的交通信號燈綠燈亮的時間為40秒,黃燈5秒,紅燈45秒.如果小明每天到路口的時間是隨機(jī)的,則小明上學(xué)時到十字路口需要等待的時間不少于20秒的概率是
A. B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列是等差數(shù)列;
(3)設(shè)數(shù)列滿足
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于回歸分析,下列說法錯誤的是( )
A.在殘差圖中,縱坐標(biāo)表示殘差
B.若散點(diǎn)圖中的一組點(diǎn)全部位于直線的圖象上,則相關(guān)系數(shù)
C.若殘差平方和越小,則相關(guān)指數(shù)越大
D.在回歸分析中,變量間的關(guān)系若是非確定關(guān)系,那么因變量不能由自變量唯一確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對于可導(dǎo)函數(shù),若
,則
是函數(shù)
的極值點(diǎn),因?yàn)楹瘮?shù)
滿足
,所以
是函數(shù)
的極值點(diǎn)”,結(jié)論以上推理
A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上函數(shù),若函數(shù)
關(guān)于點(diǎn)
對稱,且
則關(guān)于x的方程
(
)有n個不同的實(shí)數(shù)解,則n的所有可能的值為( )
A.2B.4
C.2或4D.2或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為拋物線
上的相異兩點(diǎn),且
.
(1)若直線過
,求
的值;
(2)若直線的垂直平分線交
軸與點(diǎn)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:
的左、右焦點(diǎn)分別為
,橢圓
上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線
交橢圓
于
兩點(diǎn),問在
軸上是否存在定點(diǎn)
,使得
為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 C:的離心率為
,以短軸為直徑的圓被直線 x+y-1 = 0 截得的弦長為
.
(1) 求橢圓 C 的方程;
(2) 設(shè) A, B 分別為橢圓的左、右頂點(diǎn), D 為橢圓右準(zhǔn)線 l 與 x 軸的交點(diǎn), E 為 l上的另一個點(diǎn),直線 EB 與橢圓交于另一點(diǎn)F,是否存在點(diǎn) E,使 R)? 若存在,求出點(diǎn) E 的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①已知,
是正數(shù),且
,則
;
②命題“,使得
”的否定是真命題;
③將化成二進(jìn)位制數(shù)是
;
④某同學(xué)研究變量,
之間的相關(guān)關(guān)系,并求得回歸直線方程,他得出一個結(jié)論:
與
負(fù)相關(guān)且
,
其中正確的命題的序號是__________(把你認(rèn)為正確的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com