【題目】某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組,在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總人數的,且該組中,青年人占50%,中年人占40%,老年人占10%.為了了解各組不同年齡層次的職工對本次活動的滿意程度,現用分層抽樣方法從參加活動的全體職工中抽取一個容量為200的樣本,試確定:
(1)游泳組中,青年人、中年人、老年人分別所占的比例;
(2)游泳組中,青年人、中年人、老年人分別應抽取的人數.
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(1)求橢圓的標準方程;
(2)是否存在與橢圓交于
兩點的直線
,使得
成立?若存在,求出實數
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】未知數的個數多余方程個數的方程(組)叫做不定方程,最早提出不定方程的是我國的《九章算術》.實際生活中有很多不定方程的例子,例如“百雞問題”:公元五世紀末,我國古代數學家張丘建在《算經》中提出了“百雞問題”:“雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問雞翁、母、雛各幾何?”
算法設計:
(1)設母雞、公雞、小雞數分別為、
、
,則應滿足如下條件:
;
.
(2)先分析一下三個變量的可能值.①的最小值可能為零,若全部錢用來買母雞,最多只能買33只,
故的值為
中的整數.②
的最小值為零,最大值為50.③
的最小值為零,最大值為100.
(3)對、
、
三個未知數來說,
取值范圍最少.為提高程序的效率,先考慮對
的值進行一一列舉.
(4)在固定一個的值的前提下,再對
值進行一一列舉.
(5)對于每個,
,怎樣去尋找滿足百年買百雞條件的
.由于
,
值已設定,便可由下式得到:
.
(6)這時的,
,
是一組可能解,它只滿足“百雞”條件,還未滿足“百錢”.是否真實解,還要看它們是否滿足
,滿足即為所求解.
根據上述算法思想,畫出流程圖并用偽代碼表示.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進行了一次全員參與的職業能力測試,現隨機詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,
22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統抽樣
C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差
D. 該測試中公司男職員的測試成績的平均數小于女職員的測試成績的平均數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為
,采用系統抽樣的方法抽取一個容量為
的樣本,且抽到的最小號碼為
,已知這
名學生分住在三個營區,從
到
在第一營區,從
到
在第二營區,從
到
在第三營區,則第一、第二、第三營區被抽中的人數分別為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家分析發現視覺和空間能力與性別有關,某數學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)
幾何題 | 代數題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否據此判斷有97.5%的把握認為視覺和空間能力與性別有關?
(2)現從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數為X,求X的分布列及數學期望E(X).
附表及公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓上任意一點到右焦點
的距離的最大值為
.
(1)求橢圓的方程;
(2)已知點是線段
上異于
的一個定點(
為坐標原點),是否存在過點
且與
軸不垂直的直線
與橢圓交于
兩點,使得
,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com