【題目】如圖,直角三角形的頂點(diǎn)坐標(biāo)
,直角頂點(diǎn)
,頂點(diǎn)
在
軸上,點(diǎn)
為線段
的中點(diǎn),三角形
外接圓的圓心為
.
(1)求邊所在直線方程;
(2)求圓的方程;
(3)直線過(guò)點(diǎn)
且傾斜角為
,求該直線被圓
截得的弦長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓外的有一點(diǎn)
,過(guò)點(diǎn)
作直線
.
(1)當(dāng)直線過(guò)圓心
時(shí),求直線
的方程;
(2)當(dāng)直線與圓
相切時(shí),求直線
的方程;
(3)當(dāng)直線的傾斜角為
時(shí),求直線
被圓
所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫(huà)出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體;第二次切削沿長(zhǎng)方體的對(duì)角面刨開(kāi),得到兩個(gè)三棱柱;第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開(kāi)得到兩個(gè)鱉臑和兩個(gè)陽(yáng)馬,則陽(yáng)馬與鱉臑的體積之比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)求證:對(duì)任意實(shí)數(shù),該圓恒過(guò)一定點(diǎn);
(2)若該圓與圓外切,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過(guò)C、D兩點(diǎn),求該橢圓的方程;
(2)若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過(guò)C、D兩點(diǎn),求雙曲線的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)
的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)直線過(guò)
且與曲線
相切,求直線
的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)
關(guān)于
軸對(duì)稱(chēng),求曲線
上的點(diǎn)到點(diǎn)
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>Dn,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn;
(3)記,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于
兩點(diǎn)的直線
,使得
成立?若存在,求出實(shí)數(shù)
的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為制定初中七、八、九年級(jí)學(xué)生校服的生產(chǎn)計(jì)劃,有關(guān)部門(mén)準(zhǔn)備對(duì)180名初中男生的身高作調(diào)查.
(1)為了達(dá)到估計(jì)該地初中三個(gè)年級(jí)男生身高分布的目的,你認(rèn)為采用怎樣的調(diào)查方案比較合理?
(2)表中的數(shù)據(jù)是使用了某種調(diào)查方法獲得的:七、八、九年級(jí)180名男生身高:
注:表中每組可含最低值,不含最高值.
根據(jù)表中的數(shù)據(jù),請(qǐng)你給校服生產(chǎn)廠家指定一份生產(chǎn)計(jì)劃思路.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com