【題目】在三棱錐D-ABC中,,且
,
,M,N分別是棱BC,CD的中點,下面結論正確的是( )
A.B.
平面ABD
C.三棱錐A-CMN的體積的最大值為D.AD與BC一定不垂直
【答案】ABD
【解析】
根據題意畫出三棱錐D-ABC,取中點
,連接
:對于A,根據等腰三角形性質及線面垂直判定定理可證明
平面
,從而即可判斷A;對于B,由中位線定理及線面平行判定定理即可證明;對于C,當平面
平面
時,三棱錐A-CMN的體積最大,由線段關系及三棱錐體積公式即可求解;對于D,假設
,通過線面垂直判定定理可得矛盾,從而說明假設不成立,即可說明原命題成立即可.
根據題意,畫出三棱錐D-ABC如下圖所示,取中點
,連接
:
對于A,因為,且
,
,
所以為等腰直角三角形,
則且
,
則平面
,
所以,即A正確;
對于B,因為M,N分別是棱BC,CD的中點,
由中位線定理可得,而
平面
,
平面
,
所以平面
,即B正確;
對于C,當平面平面
時,三棱錐A-CMN的體積最大,
則最大值為,即C錯誤;
對于D,假設,由
,且
,
所以平面
,則
,
又因為,且
,
所以平面
,由
平面
,則
,
由題意可知,因而
不能成立,因而假設錯誤,所以D正確;
綜上可知,正確的為ABD,
故選:ABD.
科目:高中數學 來源: 題型:
【題目】垃圾分類,是指按一定規定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經濟價值,力爭物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統;其他地級城市實現公共機構生活垃圾分類全覆蓋.某機構欲組建一個有關“垃圾分類”相關事宜的項目組,對各個地區“垃圾分類”的處理模式進行相關報道.該機構從600名員工中進行篩選,篩選方法:每位員工測試,
,
三項工作,3項測試中至少2項測試“不合格”的員工,將被認定為“暫定”,有且只有一項測試“不合格”的員工將再測試
,
兩項,如果這兩項中有1項以上(含1項)測試“不合格”,將也被認定為“暫定”,每位員工測試
,
,
三項工作相互獨立,每一項測試“不合格”的概率均為
.
(1)記某位員工被認定為“暫定”的概率為,求
;
(2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xex-alnx(無理數e=2.718…).
(1)若f(x)在(0,1)單調遞減,求實數a的取值范圍;
(2)當a=-1時,設g(x)=x(f(x)-xex)-x3+x2-b,若函數g(x)存在零點,求實數b的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線
相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在矩形中,
,
,點
在線段
上,
.把
沿
翻折至
的位置,
平面
,連結
,點
在線段
上,
,如圖2.
(1)證明:平面
;
(2)當三棱錐的體積最大時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點,
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點
,直線
與直線
的交點為
.
(1)證明:點恒在橢圓
上.
(2)設直線與橢圓
只有一個公共點
,直線
與直線
相交于點
,在平面內是否存在定點
,使得
恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點,
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點
,直線
與直線
的交點為
.
(1)證明:點恒在橢圓
上.
(2)設直線與橢圓
只有一個公共點
,直線
與直線
相交于點
,在平面內是否存在定點
,使得
恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+m|+|2x-1|.
(1)當m=-1時,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形幾何是美籍法國數學家芒德勃羅在20世紀70年代創立的一門數學新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個正三角形,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的每個小正三角形中又挖去一個“中心三角形”.按上述方法無限連續地作下去直到無窮,最終所得的極限圖形稱為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個數為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com