【題目】已知數(shù)列的前
項和為
,點
在直線
上;數(shù)列
是等差數(shù)列,且
,它的前9項和為153.
(1)求數(shù)列的通項公式;
(2)設(shè),求證:數(shù)列
的前
項和
.
【答案】(1),
;(2)證明見解析.
【解析】
(1)根據(jù)點在直線
上可得到
整理可得到
.,再由n≥2時,an=Sn﹣Sn﹣1可得到an的表達式,再對n=1時進行驗證即可得到數(shù)列{an}的通項公式;根據(jù)bn+2﹣2bn+1+bn=0可轉(zhuǎn)化為bn+2﹣bn+1=bn+1﹣bn得到{bn}為等差數(shù)列,即可求出{bn}的通項公式.
(2)將(1)中的{an}、{bn}的通項公式代入到{cn}中然后進行裂項,可得到前n項和,進而可確定Tn的表達式,從而證明了不等式.
(1)因為;故當(dāng)
時;
;當(dāng)
時,
; 滿足上式, 所以
;
由,
,故
;
;
.
(2)
∴ .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是函數(shù)
的反函數(shù),函數(shù)
的圖像關(guān)于直線
對稱,記
.
(1)求函數(shù)的解析式和定義域﹔
(2)在的圖像上是否存在這樣兩個不同點A,B,使直線AB恰好與y軸垂直?若存在,求A,B的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線
:
(
為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線
的普通方程;
(II)過曲線上任意一點
作與
夾角為
的直線,交
于點
,
的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分) 已知橢圓的左焦點
及點
,原點
到直線
的距離為
.
(1)求橢圓的離心率
;
(2)若點關(guān)于直線
的對稱點
在圓
上,求橢圓
的方程及點
的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinx,1),
=
,函數(shù)f(x)=
的最大值為6.
(1)求A;
(2)將函數(shù)f(x)的圖象向左平移 個單位,再將所得圖象上各點的橫坐標縮短為原來的
倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0,
]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程(
)的離心率為
, 短軸長為2.
(1) 求橢圓的標準方程;
(2) 直線(
)與
軸的交點為
(點
不在橢圓外), 且與橢圓交于兩個不同的點
. 若線段
的中垂線恰好經(jīng)過橢圓的下端點
, 且與線段
交于點
, 求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a∈R,函數(shù)f(x)=x|x﹣a|﹣a.
(1)若f(x)為奇函數(shù),求a的值;
(2)若對任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍;
(3)當(dāng)a>4時,求函數(shù)y=f(f(x)+a)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<x< ,sinx﹣cosx=
,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,則2a+3b+c=( )
A.50
B.70
C.110
D.120
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com