日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.
分析:(1)函數f(x)可能取得最大值為f(0),f(1),f(-
1
2a
),利用f(x)在x∈[0,1]上的最大值是
5
4
,求a的值,驗證即可得到結論;
(2)對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,等價于f(x)⊆g(x),分類討論,即可求得a的取值范圍.
解答:解:(1)函數f(x)可能取得最大值為f(0),f(1),f(-
1
2a

①當f(0)為最大值時,求得a=-1.25,由二次函數的最大值位置x=-
1
2a
∈[0,1],與在x=0處取得最大值矛盾,故f(0)為最大值不成立;
②當f(1)為最大值時,f(1)=1≠1.25,故x=1處,f(x)取不到最大值;
③當f(-
1
2a
)為最大值時,由f(-
1
2a
)=4,可得
-4a2-1
4a
=
5
4
,∴a=-
1
4
或a=-1,
當a=-
1
4
時,-
1
2a
=2不在[0,1]內,故舍去.
綜上知,a=-1;
(2)依題意f(x)⊆g(x),
①a>0時,g(x)∈[5-3a,5-a],f(x)∈[-a,1]
所以
5-3a≤-a
5-a≥1
,解得,a∈[
5
2
,4]

②a=0時,不符題意舍去;
③a<0時,f(x)最小值為f(0)或f(1),其中f(0)=-a,而-a<5-a,不符合題意
∴f(1)=1<5-a,也不符合題意
綜上,a∈[
5
2
,4]
點評:本題考查函數的最值,考查分類討論的數學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

13、設f(x)=ax2+bx+c(a≠0),對于任意-1≤x≤1,有f(x)|≤1;求證|f(2)|≤7.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數.
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數,并說明原因;
(2)若函數f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數,試求出實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于給定正數k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•閔行區二模)設f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為
14
14

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: www.久久精品| 在线观看视频一区二区三区 | 亚洲黄色网址 | 国产一级特黄 | 麻豆成人免费视频 | 97精品在线视频 | 国产xxx| 在线视频福利 | 国产成人精品毛片 | 午夜视频成人 | 亚洲免费观看视频 | 黄色一级大片在线免费看国产一 | 亚洲深夜福利 | 官场少妇尤物雪白高耸 | 91精品久久久久久久久 | 一级片在线 | 色网站在线观看 | 91麻豆精品视频 | www.亚洲一区| 在线视频a | 三级网站在线 | 一区二区三区日韩 | 美女天天干 | 日本高清网站 | 国语对白做受欧美 | 久久精品视频网站 | 肉丝美脚视频一区二区 | 国产成人精品一区 | 99在线观看视频 | 嫩草在线观看 | 97国产精品人人爽人人做 | 日韩精品在线一区 | 在线中文字幕av | 日韩中文字幕一区二区三区 | 99热| 激情小说在线视频 | 亚洲激情欧美 | 在线不欧美 | 日韩中文字幕一区二区三区 | 欧美日韩一二三区 | 国产精品大全 |