正項數列{an}的前n項和Sn滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數列{an}的通項公式an;
(2)令bn=,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<
.
科目:高中數學 來源: 題型:解答題
設等比數列{an}的前n項和為Sn.已知an+1=2Sn+2()
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成一個公差為dn的等差數列,
①在數列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數列)成等比數列?若存在,求出這樣的三項,若不存在,說明理由;
②求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}的前n項和為Sn,且Sn=2n2+n,n∈N*,數列{bn}滿足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求數列{an·bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列的前n項和為
,點
在直線
上.數列{bn}滿足
,前9項和為153.
(Ⅰ)求數列、
的通項公式;
(Ⅱ)設,數列
的前n和為
,求使不等式
對一切
都成立的最大正整數k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com