設(shè)等差數(shù)列的公差
且
記
為數(shù)列
的前
項(xiàng)和.
(1)若、
、
成等比數(shù)列,且
、
的等差中項(xiàng)為
求數(shù)列
的通項(xiàng)公式;
(2)若、
、
且
證明:
(3)若證明:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
15.設(shè)非負(fù)等差數(shù)列的公差
,記
為數(shù)列
的前n項(xiàng)和,證明:
1)若,且
,則
;
2)若則
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)非負(fù)等差數(shù)列的公差
,記
為數(shù)列
的前n項(xiàng)和,證明:
1)若,且
,則
;
2)若則
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆江蘇省蘇州市紅心中學(xué)高三摸底考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對一切正整數(shù)n,點(diǎn)Pn在函數(shù)
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以
為首項(xiàng),-1為公差的等
差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)
等差數(shù)列
的任一項(xiàng)
,其中
是
中的最大數(shù),
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(天津卷解析版) 題型:解答題
已知是等差數(shù)列,其前n項(xiàng)和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列與
的通項(xiàng)公式;
(Ⅱ)記,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列
的公比為q.
由,得
,
,
.
由條件,得方程組,解得
所以,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時,,
,故等式成立.
② 假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,
成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com