【題目】已知橢圓C:的左焦點為F(﹣1,0),離心率為
,過點F的直線l與橢圓C交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點F不與坐標軸垂直的直線交橢圓C于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
【答案】1;(Ⅱ)(
,0)
【解析】
(Ⅰ)由題意可知:c=1,a2=b2﹣c2,e,由此求出橢圓的方程.(II)設直線AB的方程為y=k(x+1)(k≠0),聯立方程,得(1+2k2)x2+4k2x+2k2﹣2=0.由直線AB過橢圓的左焦點F,記A(x1,y1),B(x2,y2),AB的中點N(x0,y0),x1+x2
,x0
,垂直平分線NG的方程為y﹣y0
,由此能求出點G橫坐標的取值范圍.
(Ⅰ)由題意可知:c=1,a2=b2﹣c2,e
解得:a,b=1
故橢圓的方程為:1
(II)設直線AB的方程為y=k(x+1)(k≠0),
與橢圓聯立,得(1+2k2)x2+4k2x+2k2﹣2=0
∵直線AB過橢圓的左焦點F∴方程有兩個不等實根.
記A(x1,y1),B(x2,y2),AB的中點N(x0,y0)
則x1+x2
x0
垂直平分線NG的方程為y﹣y0,
令y=0,得xG=x0+ky0
.
∵k≠0,∴0
∴點G橫坐標的取值范圍為(,0).
科目:高中數學 來源: 題型:
【題目】定義:對于實數和兩定點
,在某圖形上恰有
個不同的點
,使得
,稱該圖形滿足“
度契合”.若邊長為4的正方形
中,
,且該正方形滿足“4度契合”,則實數
的取值范圍是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,動點到兩坐標軸的距離之和等于它到定點
的距離,記點P的軌跡為
,給出下列四個結論:①
關于原點對稱;②
關于直線
對稱;③直線
與
有無數個公共點;④在第一象限內,
與x軸和y軸所圍成的封閉圖形的面積小于
.其中正確的結論是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海濕地如圖所示,A、B和C、D分別是以點O為中心在東西方向和南北方向設置的四個觀測點,它們到點O的距離均為公里,實線PQST是一條觀光長廊,其中,PQ段上的任意一點到觀測點C的距離比到觀測點D的距離都多8公里,QS段上的任意一點到中心點O的距離都相等,ST段上的任意一點到觀測點A的距離比到觀測點B的距離都多8公里,以O為原點,AB所在直線為x軸建立平面直角坐標系xOy.
(1)求觀光長廊PQST所在的曲線的方程;
(2)在觀光長廊的PQ段上,需建一服務站M,使其到觀測點A的距離最近,問如何設置服務站M的位置?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司推出一新款手機,因其功能強大,外觀新潮,一上市便受到消費者爭相搶購,銷量呈上升趨勢.散點圖是該款手機上市后前6周的銷售數據.
(Ⅰ)根據散點圖,用最小二乘法求關于
的線性回歸方程,并預測該款手機第8周的銷量;
(Ⅱ)為了分析市場趨勢,該公司市場部從前6周的銷售數據中隨機抽取2周的數據,求抽到的這2周的銷量均在20萬臺以下的概率.
參考公式:回歸直線方程,其中:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一塊長方形區域,
,
,在邊
的中點
處有一個可轉動的探照燈,其照射角
始終為
,設
,探照燈照射在長方形
內部區域的面積為
.
(1)求關于
的函數關系式;
(2)當時,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四邊形,點
為線段
的中點,且
.
,
.現將△
沿
進行翻折,使得
°,得到圖形如圖所示,連接
.
(Ⅰ)若點在線段
上,證明:
;
(Ⅱ)若點為
的中點,求點
到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com