日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區間[0,2π]內的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設函數f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數m的最大值;
(3)根據本題條件我們可以知道,函數f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數f(x)滿足“圖象關于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.
分析:(1)根據向量數量積的定義表示出函數f(x)的解析式將a=
3
,b=1,ω=2代入后化簡,再令f(x)=1解出x的值即可.
(2)先寫出直線l的方程,得到a與b的關系代入f(x)求出函數f(x)的值域M,解出集合P后令P⊆M恒成立即可.
(3)根據三角函數的對稱性對b分大于0和小于0兩種情況進行分析.
解答:解:(1)由題意f(x)=
OA
OB
=bsinωx+acosωx

a=
3
,b=1,ω=2時,f(x)=sin2x+
3
cos2x=2sin(2x+
π
3
)=1
?sin(2x+
π
3
)=
1
2

則有2x+
π
3
=2kπ+
π
6
2x+
π
3
=2kπ+
6
,k∈Z.
x=kπ-
π
12
x=kπ+
π
4
,k∈Z.
又因為x∈[0,2π],故f(x)=1在[0,2π]內的解集為{
π
4
11π
12
4
23π
12
}

(2)由題意,l的方程為-(x+1)+(y-1)=0?y=x+2.A在該直線上,故b=a+2.
因此,f(x)=(a+2)sinωx+acosωx=
(a+2)2+a2
sin(ωx+φ)

所以,f(x)的值域M=[-
(a+2)2+a2
(a+2)2+a2
]

又x2+mx=0的解為0和-m,故要使P⊆M恒成立,
只需-m∈[-
(a+2)2+a2
(a+2)2+a2
]
,而
(a+2)2+a2
=
2(a+1)2+2
2

-
2
≤m≤
2
,所以m的最大值
2

(3)因為f(x)=
OA
OB
=bsinωx+acosωx=
a2+b2
sin(ωx+φ)

設周期T=
ω

由于函數f(x)須滿足“圖象關于點(
π
3
,0)
對稱,
且在x=
π
6
處f(x)取得最小值”.
因此,根據三角函數的圖象特征可知,
π
3
-
π
6
=
T
4
+
n
2
•T?
π
6
=
ω
(
2n+1
4
)
?ω=6n+3,n∈N.
又因為,形如f(x)=
a2+b2
sin(ωx+φ)
的函數的圖象的對稱中心都是f(x)的零點,故需滿足sin(
π
3
ω+φ)=0

而當ω=6n+3,n∈N時,
因為
π
3
(6n+3)+φ=2nπ+π+φ
,n∈N;
所以當且僅當φ=kπ,k∈Z時,f(x)的圖象關于點(
π
3
,0)
對稱;
此時,
sinφ=
a
a2+b2
=0
cosφ=
b
a2+b2
=±1
?a=0,
b
|b|
=±1

(i)當b>0,a=0時,f(x)=sinωx,進一步要使x=
π
6
處f(x)取得最小值,
則有f(
π
6
)=sin(
π
6
•ω)=-1
?
π
6
•ω=2kπ-
π
2
?ω=12k-3
,k∈Z;
又ω>0,則有ω=12k-3,k∈N*;因此,由
ω=6n+3,n∈N×
ω=12k-3,n∈N*
可得ω=12m+9,m∈N;
(ii)當b<0,a=0時,f(x)=-sinωx,進一步要使x=
π
6
處f(x)取得最小值,
則有f(
π
6
)=-sin(
π
6
•ω)=-1
?
π
6
•ω=2kπ+
π
2
?ω=12k+3
,k∈Z;
又ω>0,則有ω=12k+3,k∈N;因此,由
ω=6n+3,n∈N×
ω=12k-3,n∈N*
可得ω=12m+3,m∈N;
綜上,使得函數f(x)滿足“圖象關于點(
π
3
,0)
對稱,
且在x=
π
6
處f(x)取得最小值”的充要條件是:
“當b>0,a=0時,ω=12m+9(m∈N)或當b<0,a=0時,ω=12m+3(m∈N)”.
點評:本題主要考查向量的數量積運算和三角函數的兩角和與差的正弦公式的應用.屬難題.平時要注意基礎知識的掌握遇到難題時方能迎刃而解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數,就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經過任何整點
②如果k與b都是無理數,則直線y=kx+b不經過任何整點
③直線l經過無窮多個整點,當且僅當l經過兩個不同的整點
④直線y=kx+b經過無窮多個整點的充分必要條件是:k與b都是有理數
⑤存在恰經過一個整點的直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,下列函數圖象關于原點對稱的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久综合九色综合欧美狠狠 | 国产精品久久久久久亚洲调教 | 精品一区在线 | 久久影院一区 | 国产精品久久久久久免费一级 | 日本亚洲精品一区二区三区 | 亚洲视频在线看 | 日韩亚洲视频在线观看 | 欧美一区二区三区在线看 | 成人免费视频网站在线观看 | 日韩一区二区精品视频 | 欧美日韩在线观看中文字幕 | 久久精品91| 国产一级淫片a级aaa | 精品国产乱码简爱久久久久久 | 成人影院av | 国产精品一区二区福利视频 | 99精品欧美一区二区三区综合在线 | 中文字幕av高清 | 婷婷色播婷婷 | 高清不卡一区 | 99视频在线| 亚洲第一视频 | 国产精久久 | 国产精品久久久久高潮色老头 | 国产精品观看 | 国产精品一区二区av | 毛片免费在线 | 久久久极品| 国产第一毛片 | 国产人体视频 | 99精品免费| 国产精品毛片 | 成人国产精品一区二区毛片在线 | 日本www在线观看 | 久久精品无码一区二区日韩av | 色偷偷噜噜噜亚洲男人的天堂 | 亚洲视频中文字幕 | 久久国产精品久久 | 欧美日韩午夜 | 狠狠的干 |